Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 942, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709832

RESUMO

Here we show that striated muscle preferentially expressed protein kinase α (Spegα) maintains cardiac function in hearts with Spegß deficiency. Speg is required for stability of excitation-contraction coupling (ECC) complexes and interacts with esterase D (Esd), Cardiomyopathy-Associated Protein 5 (Cmya5), and Fibronectin Type III and SPRY Domain Containing 2 (Fsd2) in cardiac and skeletal muscle. Mice with a sequence encoding a V5/HA tag inserted into the first exon of the Speg gene (HA-Speg mice) display a >90% decrease in Spegß but Spegα is expressed at ~50% of normal levels. Mice deficient in both Spegα and Speg ß (Speg KO mice) develop a severe dilated cardiomyopathy and muscle weakness and atrophy, but HA-Speg mice display mild muscle weakness with no cardiac involvement. Spegα in HA-Speg mice suppresses Ca2+ leak, proteolytic cleavage of Jph2, and disruption of transverse tubules. Despite it's low levels, HA-Spegß immunoprecipitation identified Esd, Cmya5 and Fsd2 as Spegß binding partners that localize to triads and dyads to stabilize ECC complexes. This study suggests that Spegα and Spegß display functional redundancy, identifies Esd, Cmya5 and Fsd2 as components of both cardiac dyads and skeletal muscle triads and lays the groundwork for the identification of new therapeutic targets for centronuclear myopathy.


Assuntos
Cardiomiopatia Dilatada , Animais , Camundongos , Éxons , Coração , Imunoprecipitação , Debilidade Muscular , Proteínas Musculares , Quinase de Cadeia Leve de Miosina , Peptídeos e Proteínas de Sinalização Intracelular
2.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36977593

RESUMO

Postnatal skeletal muscle development is a highly dynamic period associated with widespread alternative splicing changes required to adapt tissues to adult function. These splicing events have significant implications because the reversion of adult mRNA isoforms to fetal isoforms is observed in forms of muscular dystrophy. LIMCH1 is a stress fiber-associated protein that is alternatively spliced to generate uLIMCH1, a ubiquitously expressed isoform, and mLIMCH1, a skeletal muscle-specific isoform containing six additional exons simultaneously included after birth in the mouse. CRISPR/Cas9 was used to delete the six alternatively spliced exons of LIMCH1 in mice, thereby forcing the constitutive expression of the predominantly fetal isoform, uLIMCH1. mLIMCH1 knockout mice had significant grip strength weakness in vivo, and maximum force generated was decreased ex vivo. Calcium-handling deficits were observed during myofiber stimulation that could explain the mechanism by which mLIMCH1 knockout leads to muscle weakness. In addition, LIMCH1 is mis-spliced in myotonic dystrophy type 1, with the muscleblind-like (MBNL) family of proteins acting as the likely major regulator of Limch1 alternative splicing in skeletal muscle.


Assuntos
Processamento Alternativo , Distrofia Miotônica , Animais , Camundongos , Processamento Alternativo/genética , Camundongos Knockout , Músculo Esquelético/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA
3.
Am J Physiol Heart Circ Physiol ; 323(5): H983-H995, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206047

RESUMO

Dilated cardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD), an inherited degenerative disease of the cardiac and skeletal muscle caused by absence of the protein dystrophin. We showed one hallmark of DMD cardiomyopathy is the dysregulation of cardiac gap junction channel protein connexin-43 (Cx43). Proper Cx43 localization and function at the cardiac intercalated disc (ID) is regulated by post-translational phosphorylation of Cx43-carboxy-terminus residues S325/S328/S330 (pS-Cx43). Concurrently, Cx43 traffics along microtubules (MTs) for targeted delivery to the ID. In DMD hearts, absence of dystrophin results in a hyperdensified and disorganized MT cytoskeleton, yet the link with pS-Cx43 remains unaddressed. To gain insight into the relationship between MTs and pS-Cx43, DMD mice (mdx) and pS-Cx43-deficient (mdxS3A) mice were treated with an inhibitor of MT polymerization, colchicine (Colch). Colch treatment protected mdx, not mdxS3A mice, against Cx43 remodeling, improved MT directionality, and enhanced pS-Cx43/tubulin interaction. Likewise, severe arrhythmias were prevented in isoproterenol-stressed mdx, not mdxS3A mice. Furthermore, MT directionality was improved in pS-Cx43-mimicking mdx (mdxS3E). Mdxutr+/- and mdxutr+/-S3A mice, lacking one copy of dystrophin homolog utrophin, displayed enhanced cardiac fibrosis and reduced lifespan compared with mdxutr+/-S3E; and Colch treatment corrected cardiac fibrosis in mdxutr+/- but not mdxutr+/-S3A. Collectively, the data suggest that improved MT directionality reduces Cx43 remodeling and that pS-Cx43 is necessary and sufficient to regulate MT organization, which plays crucial role in correcting cardiac dysfunction in DMD mice. Thus, identification of novel organizational mechanisms acting on pS-Cx43-MT will help develop novel cardioprotective therapies for DMD cardiomyopathy.NEW & NOTEWORTHY We found that colchicine administration to Cx43-phospho-deficient dystrophic mice fails to protect against Cx43 remodeling. Conversely, Cx43-phospho-mimic dystrophic mice display a normalized MT network. We envision a bidirectional regulation whereby correction of the dystrophic MTs leads to correction of Cx43 remodeling, which in turn leads to further correction of the MTs. Our findings suggest a link between phospho-Cx43 and MTs that provides strong foundations for novel therapeutics in DMD cardiomyopathy.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Conexina 43/genética , Conexina 43/metabolismo , Camundongos Endogâmicos mdx , Modelos Animais de Doenças , Arritmias Cardíacas/genética , Arritmias Cardíacas/prevenção & controle , Cardiomiopatias/genética , Cardiomiopatias/prevenção & controle , Microtúbulos/metabolismo , Colchicina , Fibrose
4.
Proc Natl Acad Sci U S A ; 119(43): e2200215119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252004

RESUMO

Cancer cachexia is a lethal metabolic syndrome featuring muscle wasting with preferential loss of fast-twitching muscle mass through an undefined mechanism. Here, we show that cancer induces muscle wasting by selectively degrading myosin heavy chain (MHC) subtypes IIb and IIx through E3 ligase UBR2-mediated ubiquitylation. Induction of MHC loss and atrophy in C2C12 myotubes and mouse tibialis anterior (TA) by murine cancer cells required UBR2 up-regulation by cancer. Genetic gain or loss of UBR2 function inversely altered MHC level and muscle mass in TA of tumor-free mice. UBR2 selectively interacted with and ubiquitylated MHC-IIb and MHC-IIx through its substrate recognition and catalytic domain, respectively, in C2C12 myotubes. Elevation of UBR2 in muscle of tumor-bearing or free mice caused loss of MHC-IIb and MHC-IIx but not MHC-I and MHC-IIa or other myofibrillar proteins, including α-actin, troponin, tropomyosin, and tropomodulin. Muscle-specific knockout of UBR2 spared KPC tumor-bearing mice from losing MHC-IIb and MHC-IIx, fast-twitching muscle mass, cross-sectional area, and contractile force. The rectus abdominis (RA) muscle of patients with cachexia-prone cancers displayed a selective reduction of MHC-IIx in correlation with higher UBR2 levels. These data suggest that UBR2 is a regulator of MHC-IIb/IIx essential for cancer-induced muscle wasting, and that therapeutic interventions can be designed by blocking UBR2 up-regulation by cancer.


Assuntos
Caquexia , Cadeias Pesadas de Miosina , Neoplasias , Ubiquitina-Proteína Ligases , Animais , Camundongos , Actinas/metabolismo , Caquexia/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neoplasias/complicações , Neoplasias/genética , Neoplasias/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Tropomodulina/metabolismo , Tropomiosina/metabolismo , Troponina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Free Radic Biol Med ; 193(Pt 1): 373-384, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36306991

RESUMO

Perturbation to the redox state accompanies many diseases and its effects are viewed through oxidation of biomolecules, including proteins, lipids, and nucleic acids. The thiol groups of protein cysteine residues undergo an array of redox post-translational modifications (PTMs) that are important for regulation of protein and pathway function. To better understand what proteins are redox regulated following a perturbation, it is important to be able to comprehensively profile protein thiol oxidation at the proteome level. Herein, we report a deep redox proteome profiling workflow and demonstrate its application in measuring the changes in thiol oxidation along with global protein expression in skeletal muscle from mdx mice, a model of Duchenne Muscular Dystrophy (DMD). In-depth coverage of the thiol proteome was achieved with >18,000 Cys sites from 5,608 proteins in muscle being quantified. Compared to the control group, mdx mice exhibit markedly increased thiol oxidation, where a ∼2% shift in the median oxidation occupancy was observed. Pathway analysis for the redox data revealed that coagulation system and immune-related pathways were among the most susceptible to increased thiol oxidation in mdx mice, whereas protein abundance changes were more enriched in pathways associated with bioenergetics. This study illustrates the importance of deep redox profiling in gaining greater insight into oxidative stress regulation and pathways/processes that are perturbed in an oxidizing environment.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Camundongos Endogâmicos mdx , Proteoma/metabolismo , Fluxo de Trabalho , Oxirredução , Músculo Esquelético/metabolismo , Cisteína/metabolismo , Compostos de Sulfidrila/metabolismo
7.
Int J Biol Sci ; 17(11): 2871-2883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345213

RESUMO

Obesity is often associated with metabolic dysregulation and oxidative stress with the latter serving as a possible unifying link between obesity and cardiovascular complications. Glutaredoxins (Grxs) comprise one of the major antioxidant systems in the heart. Although Grx3 has been shown to act as an endogenous negative regulator of cardiac hypertrophy and heart failure, its metabolic impact on cardiac function in diet-induced obese (DIO) mice remains largely unknown. In the present study, analysis of Grx3 expression indicated that Grx3 protein levels, but not mRNA levels, were significantly increased in the hearts of DIO mice. Cardiac-specific Grx3 deletion (Grx3 CKO) mice were viable and grew indistinguishably from their littermates after being fed a high fat diet (HFD) for one month, starting at 2 months of age. After being fed with a HFD for 8 months (starting at 2 months of age); however, Grx3 CKO DIO mice displayed left ventricular systolic dysfunction with a significant decrease in ejection fraction and fractional shortening that was associated with heart failure. ROS production was significantly increased in Grx3 CKO DIO cardiomyocytes compared to control cells. Gene expression analysis revealed a significant decline in the level of transcripts corresponding to genes associated with processes such as fatty acid uptake, mitochondrial fatty acid transport and oxidation, and citrate cycle in Grx3 CKO DIO mice compared to DIO controls. In contrast, an increase in the level of transcripts corresponding to genes associated with glucose uptake and utilization were found in Grx3 CKO DIO mice compared to DIO controls. Taken together, these findings indicate that Grx3 may play a critical role in redox balance and as a metabolic switch in cardiomyocytes contributing to the development and progression of heart failure.


Assuntos
Cardiomegalia/genética , Metabolismo Energético/genética , Glutarredoxinas/genética , Insuficiência Cardíaca/genética , Animais , Cardiomegalia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Glutarredoxinas/metabolismo , Insuficiência Cardíaca/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos , Miócitos Cardíacos/metabolismo , Obesidade/metabolismo , Oxirredução , Estresse Oxidativo
8.
Curr Biol ; 31(17): 3810-3819.e4, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34289389

RESUMO

Skeletal muscle contraction depends on activation of clustered acetylcholine receptors (AchRs) and muscle-specific Na+ channels (Nav1.4). Some Nav1.4 channels are highly enriched at the neuromuscular junction (NMJ), and their clustering is thought to be essential for effective muscle excitation. However, this has not been experimentally tested, and how NMJ Na+ channels are clustered is unknown. Here, using muscle-specific ankyrinR, ankyrinB, and ankyrinG single, double, and triple-conditional knockout mice, we show that Nav1.4 channels fail to cluster only after deletion of all three ankyrins. Remarkably, ankyrin-deficient muscles have normal NMJ morphology, AchR clustering, sarcolemmal levels of Nav1.4, and muscle force, and they show no indication of degeneration. However, mice lacking clustered NMJ Na+ channels have significantly reduced levels of motor activity and their NMJs rapidly fatigue after repeated nerve-dependent stimulation. Thus, the triple redundancy of ankyrins facilitates NMJ Na+ channel clustering to prevent neuromuscular synapse fatigue.


Assuntos
Anquirinas , Músculo Esquelético , Animais , Anquirinas/genética , Análise por Conglomerados , Fadiga , Camundongos , Sinapses
9.
Redox Biol ; 36: 101557, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32506037

RESUMO

The ability for skeletal muscle to perform optimally can be affected by the regulation of Ca2+ within the triadic junctional space at rest. Reactive oxygen species impact muscle performance due to changes in oxidative stress, damage and redox regulation of signaling cascades. The interplay between ROS and Ca2+ signaling at the triad of skeletal muscle is therefore important to understand as it can impact the performance of healthy and diseased muscle. Here, we aimed to examine how changes in Ca2+ and redox signaling within the junctional space micro-domain of the mouse skeletal muscle fibre alters the homeostasis of these complexes. The dystrophic mdx mouse model displays increased RyR1 Ca2+ leak and increased NAD(P)H Oxidase 2 ROS. These alterations make the mdx mouse an ideal model for understanding how ROS and Ca2+ handling impact each other. We hypothesised that elevated t-tubular Nox2 ROS increases RyR1 Ca2+ leak contributing to an increase in cytoplasmic Ca2+, which could then initiate protein degradation and impaired cellular functions such as autophagy and ER stress. We found that inhibiting Nox2 ROS did not decrease RyR1 Ca2+ leak observed in dystrophin-deficient skeletal muscle. Intriguingly, another NAD(P)H isoform, Nox4, is upregulated in mice unable to produce Nox2 ROS and when inhibited reduced RyR1 Ca2+ leak. Our findings support a model in which Nox4 ROS induces RyR1 Ca2+ leak and the increased junctional space [Ca2+] exacerbates Nox2 ROS; with the cumulative effect of disruption of downstream cellular processes that would ultimately contribute to reduced muscle or cellular performance.


Assuntos
Distrofia Muscular de Duchenne , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Cálcio/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , NADPH Oxidase 2 , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
10.
Physiol Rep ; 7(8): e14071, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31033205

RESUMO

Growing evidence suggests that redox-sensitive proteins including glutaredoxins (Grxs) can protect cardiac muscle cells from oxidative stress-induced damage. Mammalian Grx3 has been shown to be critical in regulating cellular redox states. However, how Grx3 affects cardiac function by modulating reactive oxygen species (ROS) signaling remains unknown. In this study, we found that the expression of Grx3 in the heart is decreased during aging. To assess the physiological role of Grx3 in the heart, we generated mice in which Grx3 was conditionally deleted in cardiomyocytes (Grx3 conditional knockout (CKO) mice). Grx3 CKO mice were viable and grew indistinguishably from their littermates at young age. No difference in cardiac function was found comparing Grx3 CKO mice and littermate controls at this age. However, by the age of 12 months, Grx3 CKO mice exhibited left ventricular hypertrophy with a significant decrease in ejection fraction and fractional shortening along with a significant increase of ROS production in cardiomyocytes compared to controls. Deletion of Grx3 also impaired Ca2+ handling, caused enhanced sarcoplasmic reticulum (SR) calcium (Ca2+ ) leak, and decreased SR Ca2+ uptake. Furthermore, enhanced ROS production and alteration of Ca2+ handling in cardiomyocytes occurred, prior to cardiac dysfunction in young mice. Therefore, our findings demonstrate that Grx3 is an important factor in regulating cardiac hypertrophy and heart failure by modulating both cellular redox homeostasis and Ca2+ handling in the heart.


Assuntos
Envelhecimento/metabolismo , Cardiomegalia/genética , Glutarredoxinas/genética , Insuficiência Cardíaca/genética , Envelhecimento/patologia , Animais , Sinalização do Cálcio , Cardiomegalia/metabolismo , Células Cultivadas , Glutarredoxinas/metabolismo , Insuficiência Cardíaca/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
11.
J Physiol ; 597(7): 1855-1872, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30730556

RESUMO

KEY POINTS: Impaired growth during fetal life can reprogramme heart development and increase the risk for long-term cardiovascular dysfunction. It is uncertain if the developmental window during which the heart is vulnerable to reprogramming as a result of inadequate nutrition extends into the postnatal period. We found that adult female mice that had been undernourished only from birth to 3 weeks of age had disproportionately smaller hearts compared to males, with thinner ventricle walls and more mononucleated cardiomyocytes. In females, but not males, cardiac diastolic function, and heart rate responsiveness to adrenergic stimulation were limited and maximal exercise capacity was compromised. These data suggest that the developmental window during which the heart is vulnerable to reprogramming by inadequacies in nutrient intake may extend into postnatal life and such individuals could be at increased risk for a cardiac event as a result of strenuous exercise. ABSTRACT: Adults who experienced undernutrition during critical windows of development are at increased risk for cardiovascular disease. The contribution of cardiac function to this increased disease risk is uncertain. We evaluated the effect of a short episode of postnatal undernutrition on cardiovascular function in mice at the whole animal, organ, and cellular levels. Pups born to control mouse dams were suckled from birth to postnatal day (PN) 21 on dams fed either a control (20% protein) or a low protein (8% protein) isocaloric diet. After PN21 offspring were fed the same control diet until adulthood. At PN70 V̇O2,max was measured by treadmill test. At PN80 cardiac function was evaluated by echocardiography and Doppler analysis at rest and following ß-adrenergic stimulation. Isolated cardiomyocyte nucleation and Ca2+ transients (with and without ß-adrenergic stimulation) were measured at PN90. Female mice that were undernourished and then refed (PUN), unlike male mice, had disproportionately smaller hearts and their exercise capacity, cardiac diastolic function, and heart rate responsiveness to adrenergic stimulation were limited. A reduced left ventricular end diastolic volume, impaired early filling, and decreased stored energy at the beginning of diastole contributed to these impairments. Female PUN mice had more mononucleated cardiomyocytes; under resting conditions binucleated cells had a functional profile suggestive of increased basal adrenergic activation. Thus, a brief episode of early postnatal undernutrition in the mouse can produce persistent changes to cardiac structure and function that limit exercise/functional capacity and thereby increase the risk for the development of a wide variety of cardiovascular morbidities.


Assuntos
Tolerância ao Exercício , Coração/fisiologia , Miocárdio/patologia , Envelhecimento , Ração Animal , Animais , Animais Recém-Nascidos , Dieta/veterinária , Dieta com Restrição de Proteínas , Feminino , Frequência Cardíaca , Masculino , Desnutrição , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Fatores Sexuais
12.
Dev Cell ; 48(6): 765-779.e7, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30773489

RESUMO

Specialized adult somatic cells, such as cardiomyocytes (CMs), are highly differentiated with poor renewal capacity, an integral reason underlying organ failure in disease and aging. Among the least renewable cells in the human body, CMs renew approximately 1% annually. Consistent with poor CM turnover, heart failure is the leading cause of death. Here, we show that an active version of the Hippo pathway effector YAP, termed YAP5SA, partially reprograms adult mouse CMs to a more fetal and proliferative state. One week after induction, 19% of CMs that enter S-phase do so twice, CM number increases by 40%, and YAP5SA lineage CMs couple to pre-existing CMs. Genomic studies showed that YAP5SA increases chromatin accessibility and expression of fetal genes, partially reprogramming long-lived somatic cells in vivo to a primitive, fetal-like, and proliferative state.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Envelhecimento/fisiologia , Cromatina/metabolismo , Coração/crescimento & desenvolvimento , Organogênese , Fosfoproteínas/metabolismo , Potenciais de Ação , Animais , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Ciclo Celular , Proteínas de Ciclo Celular , Linhagem da Célula , Proliferação de Células , Diploide , Elementos Facilitadores Genéticos/genética , Mutação com Ganho de Função/genética , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/anatomia & histologia , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Organogênese/genética , Regiões Promotoras Genéticas/genética , Fator de Transcrição AP-1/metabolismo , Transgenes , Proteínas de Sinalização YAP
13.
Nat Commun ; 9(1): 5104, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504831

RESUMO

Force loss in skeletal muscle exposed to eccentric contraction is often attributed to injury. We show that EDL muscles from dystrophin-deficient mdx mice recover 65% of lost force within 120 min of eccentric contraction and exhibit minimal force loss when the interval between contractions is increased from 3 to 30 min. A proteomic screen of mdx muscle identified an 80% reduction in the antioxidant peroxiredoxin-2, likely due to proteolytic degradation following hyperoxidation by NADPH Oxidase 2. Eccentric contraction-induced force loss in mdx muscle was exacerbated by peroxiredoxin-2 ablation, and improved by peroxiredoxin-2 overexpression or myoglobin knockout. Finally, overexpression of γcyto- or ßcyto-actin protects mdx muscle from eccentric contraction-induced force loss by blocking NADPH Oxidase 2 through a mechanism dependent on cysteine 272 unique to cytoplasmic actins. Our data suggest that eccentric contraction-induced force loss may function as an adaptive circuit breaker that protects mdx muscle from injurious contractions.


Assuntos
Distrofina/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Peroxirredoxinas/metabolismo , Animais , Distrofina/deficiência , Immunoblotting , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/genética , Peroxirredoxinas/genética
14.
Nat Commun ; 9(1): 4351, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341294

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) regulates cell survival and autophagy, and its activity is regulated by amino acid availability. Rag GTPase-GATOR1 interactions inhibit mTORC1 in the absence of amino acids, and GATOR1 release and activation of RagA/B promotes mTORC1 activity in the presence of amino acids. However, the factors that play a role in Rag-GATOR1 interaction are still poorly characterized. Here, we show that the tyrosine kinase Src is crucial for amino acid-mediated activation of mTORC1. Src acts upstream of the Rag GTPases by promoting dissociation of GATOR1 from the Rags, thereby determining mTORC1 recruitment and activation at the lysosomal surface. Accordingly, amino acid-mediated regulation of Src/mTORC1 modulates autophagy and cell size expansion. Finally, Src hyperactivation overrides amino acid signaling in the activation of mTORC1. These results shed light on the mechanisms underlying pathway dysregulation in many cancer types.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Quinases da Família src/fisiologia , Autofagia , Ciclo Celular , Transdução de Sinais , Quinases da Família src/metabolismo
15.
Am J Hum Genet ; 103(2): 276-287, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30075114

RESUMO

Primary hypertension is a major risk factor for ischemic heart disease, stroke, and chronic kidney disease. Insights obtained from the study of rare Mendelian forms of hypertension have been invaluable in elucidating the mechanisms causing primary hypertension and development of antihypertensive therapies. Endothelial cells play a key role in the regulation of blood pressure; however, a Mendelian form of hypertension that is primarily due to endothelial dysfunction has not yet been described. Here, we show that the urea cycle disorder, argininosuccinate lyase deficiency (ASLD), can manifest as a Mendelian form of endothelial-dependent hypertension. Using data from a human clinical study, a mouse model with endothelial-specific deletion of argininosuccinate lyase (Asl), and in vitro studies in human aortic endothelial cells and induced pluripotent stem cell-derived endothelial cells from individuals with ASLD, we show that loss of ASL in endothelial cells leads to endothelial-dependent vascular dysfunction with reduced nitric oxide (NO) production, increased oxidative stress, and impaired angiogenesis. Our findings show that ASLD is a unique model for studying NO-dependent endothelial dysfunction in human hypertension.


Assuntos
Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Células Endoteliais/patologia , Hipertensão/genética , Adolescente , Animais , Pressão Sanguínea/genética , Células Cultivadas , Criança , Modelos Animais de Doenças , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/genética , Óxido Nítrico/genética , Estresse Oxidativo/genética , Distúrbios Congênitos do Ciclo da Ureia/genética
16.
Circ Arrhythm Electrophysiol ; 11(4): e005682, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29654126

RESUMO

BACKGROUND: Duchenne muscular dystrophy patients are prone to ventricular arrhythmias, which may be caused by abnormal calcium (Ca2+) homeostasis and elevated reactive oxygen species. CaMKII (Ca2+/calmodulin-dependent protein kinase II) is vital for normal Ca2+ homeostasis, but excessive CaMKII activity contributes to abnormal Ca2+ homeostasis and arrhythmias in cardiomyocytes. Reactive oxygen species induce CaMKII to become autonomously active. We hypothesized that genetic inhibition of CaMKII oxidation (ox-CaMKII) in a mouse model of Duchenne muscular dystrophy can alleviate abnormal Ca2+ homeostasis, thus, preventing ventricular arrhythmia. The objective of this study was to test if selective loss of ox-CaMKII affects ventricular arrhythmias in the mdx mouse model of Duchenne muscular dystrophy. METHODS AND RESULTS: 5-(6)-Chloromethyl-2,7-dichlorodihydrofluorescein diacetate staining revealed increased reactive oxygen species production in ventricular myocytes isolated from mdx mice, which coincides with elevated ventricular ox-CaMKII demonstrated by Western blotting. Genetic inhibition of ox-CaMKII by knockin replacement of the regulatory domain methionines with valines (MM-VV [CaMKII M281/282V]) prevented ventricular tachycardia in mdx mice. Confocal calcium imaging of ventricular myocytes isolated from mdx:MM-VV mice revealed normalization of intracellular Ca2+ release events compared with cardiomyocytes from mdx mice. Abnormal action potentials assessed by optical mapping in mdx mice were also alleviated by genetic inhibition of ox-CaMKII. Knockout of the NADPH oxidase regulatory subunit p47 phox normalized elevated ox-CaMKII, repaired intracellular Ca2+ homeostasis, and rescued inducible ventricular arrhythmias in mdx mice. CONCLUSIONS: Inhibition of reactive oxygen species or ox-CaMKII protects against proarrhythmic intracellular Ca2+ handling and prevents ventricular arrhythmia in a mouse model of Duchenne muscular dystrophy.


Assuntos
Arritmias Cardíacas/etiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ventrículos do Coração/enzimologia , Distrofia Muscular de Duchenne/complicações , Potenciais de Ação , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Cálcio/metabolismo , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Modelos Animais de Doenças , Frequência Cardíaca , Ventrículos do Coração/fisiopatologia , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Distrofia Muscular de Duchenne/enzimologia , Distrofia Muscular de Duchenne/fisiopatologia , NADPH Oxidase 2/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
17.
Elife ; 72018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29381135

RESUMO

Skeletal muscle from mdx mice is characterized by increased Nox2 ROS, altered microtubule network, increased muscle stiffness, and decreased muscle/respiratory function. While microtubule de-tyrosination has been suggested to increase stiffness and Nox2 ROS production in isolated single myofibers, its role in altering tissue stiffness and muscle function has not been established. Because Nox2 ROS production is upregulated prior to microtubule network alterations and ROS affect microtubule formation, we investigated the role of Nox2 ROS in diaphragm tissue microtubule organization, stiffness and muscle/respiratory function. Eliminating Nox2 ROS prevents microtubule disorganization and reduces fibrosis and muscle stiffness in mdx diaphragm. Fibrosis accounts for the majority of variance in diaphragm stiffness and decreased function, implicating altered extracellular matrix and not microtubule de-tyrosination as a modulator of diaphragm tissue function. Ultimately, inhibiting Nox2 ROS production increased force and respiratory function in dystrophic diaphragm, establishing Nox2 as a potential therapeutic target in Duchenne muscular dystrophy.


Assuntos
Diafragma/patologia , Diafragma/fisiopatologia , Microtúbulos/metabolismo , Distrofia Muscular de Duchenne/patologia , NADPH Oxidase 2/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos mdx , Espécies Reativas de Oxigênio/metabolismo
18.
Sci Rep ; 7(1): 10237, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860475

RESUMO

Skeletal muscle wasting is prevalent in many chronic diseases, necessitating inquiries into molecular regulation of muscle mass. Nuclear receptor co-activator peroxisome proliferator-activated receptor co-activator 1 alpha (PGC1α) and its splice variant PGC1α4 increase skeletal muscle mass. However, the effect of the other PGC1 sub-type, PGC1ß, on muscle size is unclear. In transgenic mice selectively over-expressing PGC1ß in the skeletal muscle, we have found that PGC1ß progressively decreases skeletal muscle mass predominantly associated with loss of type 2b fast-twitch myofibers. Paradoxically, PGC1ß represses the ubiquitin-proteolysis degradation pathway genes resulting in ubiquitinated protein accumulation in muscle. However, PGC1ß overexpression triggers up-regulation of apoptosis and autophagy genes, resulting in robust activation of these cell degenerative processes, and a concomitant increase in muscle protein oxidation. Concurrently, PGC1ß up-regulates apoptosis and/or autophagy transcriptional factors such as E2f1, Atf3, Stat1, and Stat3, which may be facilitating myopathy. Therefore, PGC1ß activation negatively affects muscle mass over time, particularly fast-twitch muscles, which should be taken into consideration along with its known aerobic effects in the skeletal muscle.


Assuntos
Músculo Esquelético/patologia , Atrofia Muscular/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose , Autofagia , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Tamanho do Órgão , Estresse Oxidativo , Proteólise , Ubiquitinação
19.
JCI Insight ; 2(17)2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28878117

RESUMO

Heart disease remains the leading cause of death worldwide, highlighting a pressing need to identify novel regulators of cardiomyocyte (CM) function that could be therapeutically targeted. The mammalian Hippo/Tead pathway is critical in embryonic cardiac development and perinatal CM proliferation. However, the requirement of Tead1, the transcriptional effector of this pathway, in the adult heart is unknown. Here, we show that tamoxifen-inducible adult CM-specific Tead1 ablation led to lethal acute-onset dilated cardiomyopathy, associated with impairment in excitation-contraction coupling. Mechanistically, we demonstrate Tead1 is a cell-autonomous, direct transcriptional activator of SERCA2a and SR-associated protein phosphatase 1 regulatory subunit, Inhibitor-1 (I-1). Thus, Tead1 deletion led to a decrease in SERCA2a and I-1 transcripts and protein, with a consequent increase in PP1-activity, resulting in accumulation of dephosphorylated phospholamban (Pln) and decreased SERCA2a activity. Global transcriptomal analysis in Tead1-deleted hearts revealed significant changes in mitochondrial and sarcomere-related pathways. Additional studies demonstrated there was a trend for correlation between protein levels of TEAD1 and I-1, and phosphorylation of PLN, in human nonfailing and failing hearts. Furthermore, TEAD1 activity was required to maintain PLN phosphorylation and expression of SERCA2a and I-1 in human induced pluripotent stem cell-derived (iPS-derived) CMs. To our knowledge, taken together, this demonstrates a nonredundant, novel role of Tead1 in maintaining normal adult heart function.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Proteínas de Ligação a DNA/fisiologia , Miócitos Cardíacos/citologia , Fatores de Transcrição/fisiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatia Dilatada/induzido quimicamente , Cardiomiopatia Dilatada/patologia , Proliferação de Células , Proteínas de Ligação a DNA/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/enzimologia , Miocárdio/metabolismo , Fosforilação , Proteína Fosfatase 1/metabolismo , Retículo Sarcoplasmático/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fatores de Transcrição de Domínio TEA , Tamoxifeno/farmacologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA