Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Treat Rev ; 125: 102719, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490088

RESUMO

Pancreatic cancer is one of the tumors with the worst prognosis, and unlike other cancers, few advances have been made in recent years. The only curative option is surgery, but only 15-20% of patients are candidates, with a high risk of relapse. In advanced pancreatic cancer there are few first-line treatment options and no validated biomarkers for better treatment selection. The development of targeted therapies in pancreatic cancer is increasingly feasible due to tumor-agnostic treatments, such as PARP inhibitors in patients with BRCA1, BRCA2 or PALB2 alterations or immunotherapies in patients with high microsatellite instability/tumor mutational burden. In addition, other therapeutic molecules have been developed for patients with KRAS G12C mutation or fusions in NTRK or NRG1. Consequently, there has been a growing interest in biomarkers that may help guide targeted therapy in pancreatic cancer. Therefore, this review aims to offer an updated perspective on biomarkers with therapeutic potential in pancreatic cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias Pancreáticas , Humanos , Biomarcadores Tumorais/genética , Mutação , Medicina de Precisão , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Instabilidade de Microssatélites
2.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189012, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37918453

RESUMO

Metabolic plasticity, which determines tumour growth and metastasis, is now understood to be a flexible and context-specific process in cancer metabolism. One of the major pathways contributing to metabolic adaptations in eucaryotic cells is autophagy, a cellular degradation and recycling process that is activated during periods of starvation or stress to maintain metabolite and biosynthetic intermediate levels. Consequently, there is a close association between the metabolic adaptive capacity of tumour cells and autophagy-related pathways in cancer. Additionally, nitric oxide regulates protein function and signalling through S-nitrosylation, a post-translational modification that can also impact metabolism and autophagy. The primary objective of this review is to provide an up-to-date overview of the role of S-nitrosylation at the intersection of metabolism and autophagy in cancer. First, we will outline the involvement of S-nitrosylation in the metabolic adaptations that occur in tumours. Then, we will discuss the multifaceted role of autophagy in cancer, the interplay between metabolism and autophagy during tumour progression, and the contribution of S-nitrosylation to autophagic dysregulation in cancer. Finally, we will present insights into relevant therapeutic aspects and discuss prospects for the future.


Assuntos
Neoplasias , Óxido Nítrico , Humanos , Autofagia , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Neoplasias/patologia
3.
Biomark Res ; 11(1): 88, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798621

RESUMO

Pancreatic cancer is one of the most challenging cancers due to its high mortality rates. Considering the late diagnosis and the limited survival benefit with current treatment options, it becomes imperative to optimize early detection, prognosis and prediction of treatment response. To address these challenges, significant research efforts have been undertaken in recent years to develop liquid-biopsy-based biomarkers for pancreatic cancer. In particular, an increasing number of studies point to cell-free DNA (cfDNA) methylation analysis as a promising non-invasive approach for the discovery and validation of epigenetic biomarkers with diagnostic or prognostic potential. In this review we provide an update on recent advancements in the field of cfDNA methylation analysis in pancreatic cancer. We discuss the relevance of DNA methylation in the context of pancreatic cancer, recent cfDNA methylation research, its clinical utility, and future directions for integrating cfDNA methylation analysis into routine clinical practice.

4.
Biomed Pharmacother ; 167: 115592, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37778272

RESUMO

INTRODUCTION: Glycogen synthase kinase 3 (GSK-3) has been proposed as a novel cancer target due to its regulating role in both tumor and immune cells. However, the connection between GSK-3 and immunoevasive contexture, including tumor budding (TB) has not been previously examined. METHODS: we investigated the expression levels of total GSK-3 as well as its isoforms (GSK-3ß and GSK-3α) and examined their potential correlation with TB grade and the programmed cell death-ligand 1 (PD-L1) in colorectal cancer (CRC) tumor samples. Additionally, we compared the efficacy of GSK-3-inhibition with PD-1/PD-L1 blockade in humanized patient-derived (PDXs) xenografts models of high-grade TB CRC. RESULTS: we show that high-grade (BD3) TB CRC is associated with elevated expression levels of total GSK-3, specifically the GSK-3ß isoform, along with increased expression of PD-L1 in tumor cells. Moreover, we define an improved risk stratification of CRC patients based on the presence of GSK-3+/PD-L1+/BD3 tumors, which are associated with a worse prognosis. Significantly, in contrast to the PD-L1/PD-1 blockade approach, the inhibition GSK-3 demonstrated a remarkable enhancement in the antitumor response. This was achieved through the reduction of tumor buds via necrosis and apoptosis pathways, along with a notable increase of activated tumor-infiltrating CD8+ T cells, NK cells, and CD4- CD8- T cells. CONCLUSIONS: our study provides compelling evidence for the clinical significance of GSK-3 expression and TB grade in risk stratification of CRC patients. Moreover, our findings strongly support GSK-3 inhibition as an effective therapy specifically targeting high-grade TB in CRC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Humanos , Quinase 3 da Glicogênio Sintase , Glicogênio Sintase Quinase 3 beta , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Relevância Clínica , Neoplasias Colorretais/patologia
5.
Clin Epigenetics ; 15(1): 118, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481552

RESUMO

BACKGROUND: Pancreatic cancer is the most lethal cancer with a dismal prognosis mainly due to diagnosis at advanced stage and ineffective treatments. CA19-9 levels and computed tomography (CT) imaging are the main standard criteria for evaluating disease progression and treatment response. In this study we explored liquid biopsy-based epigenetic biomarkers for prognosis and monitoring disease in patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). METHODS: Plasma samples were collected from 44 mPDAC patients at the time of diagnosis, and in 15 of them, additional samples were obtained during follow-up of the disease. After cell-free DNA (cfDNA), isolation circulating levels of methylated NPTX2, SPARC, BMP3, SFRP1 and TFPI2 genes were measured using digital droplet PCR (ddPCR). BEAMing technique was performed for quantitation of RAS mutations in cfDNA, and CA19-9 was measured using standard techniques. RESULTS: NPTX2 was the most highly and frequently methylated gene in cfDNA samples from mPDAC patients. Higher circulating NPTX2 methylation levels at diagnosis were associated with poor prognosis and efficiently stratified patients for prediction of overall survival (6.06% cut-off, p = 0.0067). Dynamics of circulating NPTX2 methylation levels correlated with disease progression and response to therapy and predicted better than CA19-9 the evolution of disease in mPDAC patients. Remarkably, in many cases the disease progression detected by CT scan was anticipated by an increase in circulating NPTX2 methylation levels. CONCLUSIONS: Our study supports circulating NPTX2 methylation levels as a promising liquid biopsy-based clinical tool for non-invasive prognosis, monitoring disease evolution and response to treatment in mPDAC patients.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores Tumorais/genética , Metilação de DNA , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Prognóstico , Ácidos Nucleicos Livres/genética , Progressão da Doença , Neoplasias Pancreáticas
6.
Front Vet Sci ; 10: 1157878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065257

RESUMO

Introduction: Liquid biopsy based on the analysis of circulating cell-free DNA (cfDNA), as well as on detection of point mutations by digital droplet PCR (ddPCR), has revolutionized the research in oncology. In recent years, this technique has been pioneering in veterinary medicine since it is a minimally invasive approach with very promising results for characterization of tumors. Methods: The aim of this study was, firstly, to analyze the concentration and the fragmentation pattern of cfDNA of dogs with mammary tumors (n = 36) and healthy dogs (n = 5) and its correlation with clinicopathological data. Secondly, analysis of TP53 gene expression and the point mutation in the codon 245 were performed in cfDNA and in tumor tissues to assess their potential as plasma biomarkers. Results and discussion: Our results highlighted that those dogs with worse clinicopathological characteristics (simple or undifferentiated carcinomas, higher histological grade and presence of peritumoral inflammation) shown higher cfDNA concentration and higher concentrations of short-fragments (<190 bp) than healthy dogs. In addition, although no detection of the point mutation in codon 245 of TP53 gene could be detected neither in plasma nor tumor tissue, an increased TP53 expression was detected in animals with tumors bearing malignant characteristics. Finally, a high concordance with TP53 gene expression in plasma and tumor tissue and cfDNA concentration was also found. The results derived from this work confirm the valuable potential of cfDNA and its fragments, as well as the analysis of TP53 expression in plasma as useful liquid biomarkers for clinical application in veterinary oncology.

7.
J Pathol ; 260(3): 261-275, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37017456

RESUMO

S-nitrosoglutathione reductase (GSNOR) is a denitrosylase enzyme that has been suggested to play a tumor suppressor role, although the mechanisms responsible are still largely unclear. In this study, we show that GSNOR deficiency in tumors is associated with poor prognostic histopathological features and poor survival in patients with colorectal cancer (CRC). GSNOR-low tumors were characterized by an immunosuppressive microenvironment with exclusion of cytotoxic CD8+ T cells. Notably, GSNOR-low tumors exhibited an immune evasive proteomic signature along with an altered energy metabolism characterized by impaired oxidative phosphorylation (OXPHOS) and energetic dependence on glycolytic activity. CRISPR-Cas9-mediated generation of GSNOR gene knockout (KO) CRC cells confirmed in vitro and in vivo that GSNOR-deficiency conferred higher tumorigenic and tumor-initiating capacities. Moreover, GSNOR-KO cells possessed enhanced immune evasive properties and resistance to immunotherapy, as revealed following xenografting them into humanized mouse models. Importantly, GSNOR-KO cells were characterized by a metabolic shift from OXPHOS to glycolysis to produce energy, as indicated by increased lactate secretion, higher sensitivity to 2-deoxyglucose (2DG), and a fragmented mitochondrial network. Real-time metabolic analysis revealed that GSNOR-KO cells operated close to their maximal glycolytic rate, as a compensation for lower OXPHOS levels, explaining their higher sensitivity to 2DG. Remarkably, this higher susceptibility to glycolysis inhibition with 2DG was validated in patient-derived xenografts and organoids from clinical GSNOR-low tumors. In conclusion, our data support the idea that metabolic reprogramming induced by GSNOR deficiency is an important mechanism for tumor progression and immune evasion in CRC and that the metabolic vulnerabilities associated with the deficiency of this denitrosylase can be exploited therapeutically. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias , Oxirredutases , Camundongos , Animais , Humanos , Linfócitos T CD8-Positivos , Evasão da Resposta Imune , Proteômica , Microambiente Tumoral
8.
Cancers (Basel) ; 14(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35804826

RESUMO

The identification of factors that respond to anti-angiogenic therapy would represent a significant advance in the therapeutic management of metastatic-colorectal-cancer (mCRC) patients. We previously reported the relevance of VEGF-A and some components of the renin-angiotensin-aldosterone system (RAAS) in the response to anti-angiogenic therapy in cancer patients. Therefore, this prospective study aims to evaluate the prognostic value of basal plasma levels of VEGF-A and angiotensin-converting enzyme (ACE) in 73 mCRC patients who were to receive bevacizumab-based therapies as a first-line treatment. We found that high basal VEGF-A plasma levels were significantly associated with worse overall survival (OS) and progression-free survival (FPS). On the other hand, low ACE levels were significantly associated with poor OS. Importantly, a simple scoring system combining the basal plasma levels of VEGF-A and ACE efficiently stratified mCRC patients, according to OS, into high-risk or low-risk groups, prior to their treatment with bevacizumab. In conclusion, our study supports that VEGF-A and ACE may be potential biomarkers for selecting those mCRC patients who will most benefit from receiving chemotherapy plus bevacizumab treatment in first-line therapy. Additionally, our data reinforce the notion of a close association between the RAAS and the anti-angiogenic response in cancer.

9.
Br J Cancer ; 126(6): 874-880, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34937947

RESUMO

BACKGROUND: Aflibercept is an antiangiogenic drug against metastatic colorectal cancer (mCRC) combined with 5-fluorouracil/leucovorin/irinotecan (FOLFIRI); however, no antiangiogenic biomarker has yet been validated. We assessed aflibercept plus FOLFIRI, investigating the biomarker role of baseline vascular endothelial growth factor A (VEGF-A) and angiotensin-converting enzyme (ACE). METHODS: Phase II trial in oxaliplatin-treated mCRC patients who received aflibercept plus FOLFIRI. The reported 135 ng/mL ACE cut-off was used and ROC analysis was performed to assess the optimal VEGF-A cut-off for progression-free survival (PFS). Overall survival (OS), time to progression (TTP), time to treatment failure (TTF), overall response rate (ORR) and disease control rate (DCR) were also assessed. RESULTS: In total, 101 patients were followed for a median of 12 (6-17) months. The 1941 pg/mL VEGF-A was an optimal cut-off, with a longer median PFS when VEGF-A was <1941 versus ≥1941 pg/mL (9 versus 4 months). Patients with VEGF-A < 1941 pg/mL showed longer median OS (19 versus 8 months), TTP (9 versus 4 months) and TTF (8 versus 4 months), along with higher ORR (26% versus 9%) and DCR (81% versus 55%). No differences were identified according to ACE levels. CONCLUSIONS: This study supports aflibercept plus FOLFIRI benefits, suggesting VEGF-A as a potential biomarker to predict better outcomes.


Assuntos
Neoplasias Colorretais , Fator A de Crescimento do Endotélio Vascular , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Camptotecina/uso terapêutico , Neoplasias Colorretais/patologia , Fluoruracila/uso terapêutico , Humanos , Irinotecano/uso terapêutico , Leucovorina/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Cancers (Basel) ; 13(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802006

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a highly inflammatory microenvironment and liquid biopsy has emerged as a promising tool for the noninvasive analysis of this tumor. In this study, plasma was obtained from 58 metastatic PDAC patients, and neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), circulating cell-free DNA (cfDNA) concentration, and circulating RAS mutation were determined. We found that NLR was significantly associated with both overall survival (OS) and progression-free survival. Remarkably, NLR was an independent risk factor for poor OS. Moreover, NLR and PLR positively correlated, and combination of both inflammatory markers significantly improved the prognostic stratification of metastatic PDAC patients. NLR also showed a positive correlation with cfDNA levels and RAS mutant allelic fraction (MAF). Besides, we found that neutrophil activation contributed to cfDNA content in the plasma of metastatic PDAC patients. Finally, a multi-parameter prognosis model was designed by combining NLR, PLR, cfDNA levels, RAS mutation, RAS MAF, and CA19-9, which performs as a promising tool to predict the prognosis of metastatic PDAC patients. In conclusion, our study supports the idea that the use of systemic inflammatory markers along with circulating tumor-specific markers may constitute a valuable tool for the clinical management of metastatic PDAC patients.

11.
J Pers Med ; 11(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572343

RESUMO

This study represents a novel proof of concept of the clinical utility of miRNAs from exhaled breath condensate (EBC) as biomarkers of lung cancer (LC). Genome-wide miRNA profiling and machine learning analysis were performed on EBC from 21 healthy volunteers and 21 LC patients. The levels of 12 miRNAs were significantly altered in EBC from LC patients where a specific signature of miR-4507, miR-6777-5p and miR-451a distinguished these patients with high accuracy. Besides, a distinctive miRNA profile between LC adenocarcinoma and squamous cell carcinoma was observed, where a combined panel of miR-4529-3p, miR-8075 and miR-7704 enabling discrimination between them. EBC levels of miR-6777-5p, 6780a-5p and miR-877-5p predicted clinical outcome at 500 days. Two additional miRNA signatures were also associated with other clinical features such as stage and invasion status. Dysregulated EBC miRNAs showed potential target genes related to LC pathogenesis, including CDKN2B, PTEN, TP53, BCL2, KRAS and EGFR. We conclude that EBC miRNAs might allow the identification, stratification and monitorization of LC, which could lead to the development of precision medicine in this and other respiratory diseases.

12.
Lab Invest ; 101(3): 292-303, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33262438

RESUMO

Cancer stem cells (CSCs) are involved in the resistance of estrogen (ER)-positive breast tumors against endocrine therapy. On the other hand, nitric oxide (NO) plays a relevant role in CSC biology, although there are no studies addressing how this important signaling molecule may contribute to resistance to antihormonal therapy in ER+ breast cancer. Therefore, we explored whether targeting NO in ER+ breast cancer cells impacts CSC subpopulation and sensitivity to hormonal therapy with tamoxifen. NO was targeted in ER+ breast cancer cells by specific NO depletion and NOS2 silencing and mammosphere formation capacity, stem cell markers and tamoxifen sensitivity were analyzed. An orthotopic breast tumor model in mice was also performed to analyze the efficacy of NO-targeted therapy plus tamoxifen. Kaplan-Meier curves were made to analyze the association of NOS2 gene expression with survival of ER+ breast cancer patients treated with tamoxifen. Our results show that targeting NO inhibited mamosphere formation, CSC markers expression and increased the antitumoral efficacy of tamoxifen in ER+ breast cancer cells, whereas tamoxifen-resistant cells displayed higher expression levels of NOS2 and Notch-1 compared with parental cells. Notably, NO-targeted therapy plus tamoxifen was more effective than either treatment alone in an orthotopic breast tumor model in immunodeficient mice. Furthermore, low NOS2 expression was significantly associated with a higher metastasis-free survival in ER+ breast cancer patients treated with tamoxifen. In conclusion, our data support that NO-targeted therapy in ER+ breast cancer may contribute to increase the efficacy of antihormonal therapy avoiding the development of resistance to these treatments.


Assuntos
Antineoplásicos Hormonais , Neoplasias da Mama , Óxido Nítrico , Receptores de Estrogênio/metabolismo , Tamoxifeno , Animais , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Inativação Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
13.
Front Med (Lausanne) ; 7: 264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719800

RESUMO

Tumor budding has been found to be of prognostic significance for several cancers, including colorectal cancer (CRC). Additionally, the molecular classification of CRC has led to the identification of different immune microenvironments linked to distinct prognosis and therapeutic response. However, the association between tumor budding and the different molecular subtypes of CRC and distinct immune profiles have not been fully elucidated. This study focused, firstly, on the validation of derived xenograft models (PDXs) for the evaluation of tumor budding and their human counterparts and, secondly, on the association between tumor budding and the immune tumor microenvironment by the analysis of gene expression signatures of immune checkpoints, Toll-like receptors (TLRs), and chemokine families. Clinical CRC samples with different grades of tumor budding and their corresponding PDXs were included in this study. Tumor budding grade was reliably reproduced in early passages of PDXs, and high-grade tumor budding was intimately related with a poor-prognosis CMS4 mesenchymal subtype. In addition, an upregulation of negative regulatory immune checkpoints (PDL1, TIM-3, NOX2, and IDO1), TLRs (TLR1, TLR3, TLR4, and TLR6), and chemokine receptors and ligands (CXCR2, CXCR4, CXCL1, CXCL2, CXCL6, and CXCL9) was detected in high-grade tumor budding in both human samples and their corresponding xenografts. Our data support a close link between high-grade tumor budding in CRC and a distinctive immune-suppressive microenvironment promoting tumor invasion, which may have a determinant role in the poor prognosis of the CMS4 mesenchymal subtype. In addition, our study demonstrates that PDX models may constitute a robust preclinical platform for the development of novel therapies directed against tumor budding in CRC.

14.
Cancers (Basel) ; 12(7)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630266

RESUMO

Liquid biopsy may assist in the management of cancer patients, which can be particularly applicable in pancreatic ductal adenocarcinoma (PDAC). In this study, we investigated the utility of circulating cell-free DNA (cfDNA)-based markers as prognostic tools in metastatic PDAC. Plasma was obtained from 61 metastatic PDAC patients, and cfDNA levels and fragmentation were determined. BEAMing technique was used for quantitative determination of RAS mutation allele fraction (MAF) in cfDNA. We found that the prognosis was more accurately predicted by RAS mutation detection in plasma than in tissue. RAS mutation status in plasma was a strong independent prognostic factor for both overall survival (OS) and progression-free survival (PFS). Moreover, RAS MAF in cfDNA was also an independent risk factor for poor OS, and was strongly associated with primary tumours in the body/tail of the pancreas and liver metastases. Higher cfDNA levels and fragmentation were also associated with poorer OS and shorter PFS, body/tail tumors, and hepatic metastases, whereas cfDNA fragmentation positively correlated with RAS MAF. Remarkably, the combination of CA19-9 with MAF, cfDNA levels and fragmentation improved the prognostic stratification of patients. Furthermore, dynamics of RAS MAF better correlated with patients' outcome than standard CA19-9 marker. In conclusion, our study supports the use of cfDNA-based liquid biopsy markers as clinical tools for the non-invasive prognosis and monitoring of metastatic PDAC patients.

15.
Biochem Pharmacol ; 176: 113769, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31862448

RESUMO

Nitric oxide (NO) has been highlighted as an important agent in tumor processes. However, a complete understanding of the mechanisms by which this simple diatomic molecule contributes in tumorigenesis is lacking. Evidence is rapidly accumulating that metabolic reprogramming is a major new aspect of NO biology and this review is aimed to summarize recent research progress on this novel feature that expands the complex and multifaceted role of NO in cancer. Therefore, we discuss how NO may influence glucose and glutamine utilization by tumor cells, and its participation in the regulation of mitochondrial function and dynamics, that is an important mechanism through which cancer cells reprogram their metabolism to meet the biosynthetic needs of rapid proliferation. Finally, we also discuss the NO-related metabolic rewiring involved in the modification of the tumor microenvironment to support cancer invasion and the escape from immune system-mediated recognition. Protein S-nitrosylation appears as a common mechanism by which NO signaling reprograms metabolism. Hence, future research is needed on dysregulated S-nitrosylation/denitrosylation in cancer to comprehend the NO-induced metabolic changes in tumor cells and the role of NO in the metabolic crosstalk within tumor microenvironment.


Assuntos
Glucose/metabolismo , Glutamina/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Óxido Nítrico/metabolismo , Proliferação de Células , Metabolismo Energético , Humanos , Neoplasias/patologia , Transdução de Sinais , Microambiente Tumoral
16.
J Cell Mol Med ; 23(12): 8219-8232, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560832

RESUMO

Newly emerged proteomic methodologies, particularly data-independent acquisition (DIA) analysis-related approaches, would improve current gene expression-based classifications of colorectal cancer (CRC). Therefore, this study was aimed to identify protein expression signatures using SWATH-MS DIA and targeted data extraction, to aid in the classification of molecular subtypes of CRC and advance in the diagnosis and development of new drugs. For this purpose, 40 human CRC samples and 7 samples of healthy tissue were subjected to proteomic and bioinformatic analysis. The proteomic analysis identified three different molecular CRC subtypes: P1, P2 and P3. Significantly, P3 subtype showed high agreement with the mesenchymal/stem-like subtype defined by gene expression signatures and characterized by poor prognosis and survival. The P3 subtype was characterized by decreased expression of ribosomal proteins, the spliceosome, and histone deacetylase 2, as well as increased expression of osteopontin, SERPINA 1 and SERPINA 3, and proteins involved in wound healing, acute inflammation and complement pathway. This was also confirmed by immunodetection and gene expression analyses. Our results show that these tumours are characterized by altered expression of proteins involved in biological processes associated with immune evasion and metastasis, suggesting new therapeutic options in the treatment of this aggressive type of CRC.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Idoso , Biomarcadores Tumorais/genética , Neoplasias Colorretais/classificação , Neoplasias Colorretais/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Evasão da Resposta Imune , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico , Proteoma/genética
17.
Transl Res ; 210: 99-108, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30953610

RESUMO

In recent years, an increasing number of studies have shown that there is an important connection between nitric oxide (NO) and the pathology of malignant diseases, but we are far from a complete comprehension of how this simple diatomic molecule contributes to tumorigenesis. The emerging identification of immune-mediated mechanisms regulated by NO may help to unravel the intricate and complex relationships between NO and cancer. Therefore, this review provides a summary of recent advances in our understanding of the immunomodulatory role of NO in cancer, and in particular the role of this pleiotropic signaling molecule as an immunosuppressive mediator in the tumor microenvironment. We will discuss the participation of NO in the different strategies used by tumors to escape from immune system-mediated recognition, including the acquisition of stem cell like capacities by tumor cells and the metabolic reprogramming of tumor infiltrating immune cells. Finally, we will also discuss different therapeutic strategies directed against NO for abating the immunosuppressive tumor microenvironment and to increase the efficacy of immunotherapy in cancer.


Assuntos
Imunidade , Imunomodulação , Neoplasias/imunologia , Óxido Nítrico/metabolismo , Microambiente Tumoral/imunologia , Humanos , Evasão da Resposta Imune
18.
BMC Biol ; 16(1): 3, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29329541

RESUMO

BACKGROUND: Nitric oxide (NO) has been highlighted as an important agent in cancer-related events. Although the inducible nitric oxide synthase (iNOS) isoform has received most attention, recent studies in the literature indicate that the endothelial isoenzyme (eNOS) can also modulate different tumor processes including resistance, angiogenesis, invasion, and metastasis. However, the role of eNOS in cancer stem cell (CSC) biology and mesenchymal tumors is unknown. RESULTS: Here, we show that eNOS was significantly upregulated in VilCre ERT2 Apc fl/+ and VilCre ERT2 Apc fl/fl mouse intestinal tissue, with intense immunostaining in hyperproliferative crypts. Similarly, the more invasive VilCre ERT2 Apc fl/+ Pten fl/+ mouse model showed an overexpression of eNOS in intestinal tumors whereas this isoform was not expressed in normal tissue. However, none of the three models showed iNOS expression. Notably, when 40 human colorectal tumors were classified into different clinically relevant molecular subtypes, high eNOS expression was found in the poor relapse-free and overall survival mesenchymal subtype, whereas iNOS was absent. Furthermore, Apc fl/fl organoids overexpressed eNOS compared with wild-type organoids and NO depletion with the scavenger carboxy-PTIO (c-PTIO) decreased the proliferation and the expression of stem-cell markers, such as Lgr5, Troy, Vav3, and Slc14a1, in these intestinal organoids. Moreover, specific NO depletion also decreased the expression of CSC-related proteins in human colorectal cancer cells such as ß-catenin and Bmi1, impairing the CSC phenotype. To rule out the contribution of iNOS in this effect, we established an iNOS-knockdown colorectal cancer cell line. NO-depleted cells showed a decreased capacity to form tumors and c-PTIO treatment in vivo showed an antitumoral effect in a xenograft mouse model. CONCLUSION: Our data support that eNOS upregulation occurs after Apc loss, emerging as an unexpected potential new target in poor-prognosis mesenchymal colorectal tumors, where NO scavenging could represent an interesting therapeutic alternative to targeting the CSC subpopulation.


Assuntos
Biomarcadores Tumorais/biossíntese , Proliferação de Células/fisiologia , Neoplasias Colorretais/enzimologia , Intestinos/enzimologia , Células-Tronco Mesenquimais/enzimologia , Óxido Nítrico Sintase Tipo III/fisiologia , Animais , Células CACO-2 , Neoplasias Colorretais/patologia , Células HCT116 , Humanos , Intestinos/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
Arterioscler Thromb Vasc Biol ; 37(10): 1923-1932, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28684614

RESUMO

OBJECTIVE: Antiphospholipid syndrome (APS) leukocytes exhibit an oxidative perturbation, directly linked to alterations in mitochondrial dynamics and metabolism. This disturbance is related to the patients' prothrombotic status and can be prevented by in vitro treatment with coenzyme Q10. Our aim was to investigate short-term effects of in vivo ubiquinol (reduced coenzyme Q10 [Qred]) supplementation on markers related to inflammation and thrombosis in APS through a prospective, randomized, crossover, placebo-controlled trial. APPROACH AND RESULTS: Thirty-six patients with APS were randomized to receive Qred (200 mg/d) or placebo for 1 month. Thirty-three patients with APS completed the intervention, which increased plasma coenzyme Q10. Qred improved endothelial function and decreased monocyte expression of prothrombotic and proinflammatory mediators, inhibited phosphorylation of thrombosis-related protein kinases, and decreased peroxides and percentage of monocytes with depolarized mitochondria; mitochondrial size was increased, and mitochondrial biogenesis-related genes were upregulated. Qred ameliorated extruded neutrophil extracellular traps in neutrophils and downregulated peroxides, intracellular elastase, and myeloperoxidase. Nanostring microRNA profiling revealed 20 microRNAs reduced in APS monocytes, and 16 of them, with a preponderance of cardiovascular disease-related target mRNAs, were upregulated. Monocytes gene profiling showed differential expression of 29 atherosclerosis-related genes, 23 of them changed by Qred. Interaction networks of genes and microRNAs were identified. Correlation studies demonstrated co-ordinated effects of Qred on thrombosis and endothelial function-associated molecules. CONCLUSIONS: Our results highlight the potential of Qred to modulate the overexpression of inflammatory and thrombotic risk markers in APS. Because of the absence of clinically significant side effects and its potential therapeutic benefits, Qred might act as safe adjunct to standard therapies in APS. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02218476.


Assuntos
Síndrome Antifosfolipídica/tratamento farmacológico , Síndrome Antifosfolipídica/fisiopatologia , Ubiquinona/análogos & derivados , Vitaminas/uso terapêutico , Estudos Cross-Over , Endotélio Vascular/fisiologia , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases , Inflamação/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/fisiologia , Monócitos/patologia , Oxirredução , Estudos Prospectivos , Ubiquinona/uso terapêutico
20.
Am J Physiol Lung Cell Mol Physiol ; 313(4): L664-L676, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28619761

RESUMO

We explored whether the proteomic analysis of exhaled breath condensate (EBC) may provide biomarkers for noninvasive screening for the early detection of lung cancer (LC). EBC was collected from 192 individuals [49 control (C), 49 risk factor-smoking (S), 46 chronic obstructive pulmonary disease (COPD) and 48 LC]. With the use of liquid chromatography and tandem mass spectrometry, 348 different proteins with a different pattern among the four groups were identified in EBC samples. Significantly more proteins were identified in the EBC from LC compared with other groups (C: 12.4 ± 1.3; S: 15.3 ± 1; COPD: 14 ± 1.6; LC: 24.2 ± 3.6; P = 0.0001). Furthermore, the average number of proteins identified per sample was significantly higher in LC patients, and receiver operating characteristic curve (ROC) analysis showed an area under the curve of 0.8, indicating diagnostic value. Proteins frequently detected in EBC, such as dermcidin and hornerin, along with others much less frequently detected, such as hemoglobin and histones, were identified. Cytokeratins (KRTs) were the most abundant proteins in EBC samples, and levels of KRT6A, KRT6B, and KRT6C isoforms were significantly higher in samples from LC patients (P = 0.0031, 0.0011, and 0.0009, respectively). Moreover, the amount of most KRTs in EBC samples from LC patients showed a significant positive correlation with tumor size. Finally, we used a random forest algorithm to generate a robust model using EBC protein data for the diagnosis of patients with LC where the area under the ROC curve obtained indicated a good classification (82%). Thus this study demonstrates that the proteomic analysis of EBC samples is an appropriated approach to develop biomarkers for the diagnosis of lung cancer.


Assuntos
Biomarcadores/metabolismo , Testes Respiratórios/métodos , Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico , Proteoma/metabolismo , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Testes Respiratórios/instrumentação , Carcinoma Neuroendócrino/diagnóstico , Carcinoma Neuroendócrino/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/metabolismo , Expiração , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Carcinoma de Pequenas Células do Pulmão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA