Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(1): 170-183, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085851

RESUMO

Treatment of Mycobacterium tuberculosis and Mycobacterium avium infections requires multiple drugs for long time periods. Mycobacterium protein-tyrosine-phosphatase B (MptpB) is a key M. tuberculosis virulence factor that subverts host antimicrobial activity to promote intracellular survival. Inhibition of MptpB reduces the infection burden in vivo and offers new opportunities to improve current treatments. Here, we demonstrate that M. avium produces an MptpB orthologue and that the MptpB inhibitor C13 reduces the M. avium infection burden in macrophages. Combining C13 with the antibiotics rifampicin or bedaquiline showed an additive effect, reducing intracellular infection of both M. tuberculosis and M. avium by 50%, compared to monotreatment with antibiotics alone. This additive effect was not observed with pretomanid. Combining C13 with the minor groove-binding compounds S-MGB-362 and S-MGB-363 also reduced the M. tuberculosis intracellular burden. Similar additive effects of C13 and antibiotics were confirmed in vivo using Galleria mellonella infections. We demonstrate that the reduced mycobacterial burden in macrophages observed with C13 treatments is due to the increased trafficking to lysosomes.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Proteínas Tirosina Fosfatases , Micobactérias não Tuberculosas
2.
Environ Pollut ; 341: 122597, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37741543

RESUMO

There are strong suggestions for a link between pulmonary tuberculosis (TB) and air quality. Diesel exhaust is one of the main contributors to pollution and it is reported to be able to modify susceptibility to lung infections. In this study we exposed THP-1 human macrophages and Mycobacterium bovis BCG to diesel exhaust particles (DEPs). High cytotoxicity and activation of apoptosis was found in THP-1 cells at 3 and 6 days, but no effect was found on the growth of M. bovis BCG. Infection of THP-1 cells exposed to a non-cytotoxic DEP concentration showed a limited capacity to engulf latex beads. However, M. bovis BCG infection of macrophages did not result in an increase in the bacterial burden, but it did result in an increase in the bacteria recovered from the extracellular media, suggesting a poor contention of M. bovis BCG. We also observed that DEP exposure limited the production of cytokines. Using the Galleria mellonella model of infection, we observed that larvae exposed to low levels of DEPs were less able to survive after infection with M. bovis BCG and had a higher internal bacterial load after 4 days of infection. Unraveling the links between air pollution and impairment of human antimycobacterial immunity is vital, because pollution is rapidly increasing in areas where TB incidence is extremely high.


Assuntos
Mycobacterium bovis , Animais , Humanos , Emissões de Veículos/toxicidade , Macrófagos , Citocinas , Larva
3.
J Clin Med ; 11(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35407608

RESUMO

Little is known about whether second-hand smoke (SHS) exposure affects tuberculosis (TB). Here, we investigate the association of cigarette smoke exposure with active TB and latent TB infection (LTBI) in children, analyzing Interferon-Gamma Release Assays' (IGRAs) performance and cytokine immune responses. A total of 616 children from contact-tracing studies were included and classified regarding their smoking habits [unexposed, SHS, or smokers]. Risk factors for positive IGRAs, LTBI, and active TB were defined. GM-CSF, IFN-γ, IL-2, IL-5, IL-10, IL-13, IL-22, IL-17, TNF-α, IL-1RA and IP-10 cytokines were detected in a subgroup of patients. Being SHS exposed was associated with a positive IGRA [aOR (95% CI): 8.7 (5.9-12.8)] and was a main factor related with LTBI [aOR (95% CI): 7.57 (4.79-11.94)] and active TB [aOR (95% CI): 3.40 (1.45-7.98)]. Moreover, IGRAs' sensitivity was reduced in active TB patients exposed to tobacco. IL-22, GM-CSF, IL-5, TNF-α, IP-10, and IL-13 were less secreted in LTBI children exposed to SHS. In conclusion, SHS is associated with LTBI and active TB in children. In addition, false-negative IGRAs obtained on active TB patients exposed to SHS, together with the decrease of specific cytokines released, suggest that tobacco may alter the immune response.

4.
Sci Rep ; 11(1): 7667, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828158

RESUMO

SapM is a secreted virulence factor from Mycobacterium tuberculosis critical for pathogen survival and persistence inside the host. Its full potential as a target for tuberculosis treatment has not yet been exploited because of the lack of potent inhibitors available. By screening over 1500 small molecules, we have identified new potent and selective inhibitors of SapM with an uncompetitive mechanism of inhibition. The best inhibitors share a trihydroxy-benzene moiety essential for activity. Importantly, the inhibitors significantly reduce mycobacterial burden in infected human macrophages at 1 µM, and they are selective with respect to other mycobacterial and human phosphatases. The best inhibitor also reduces intracellular burden of Francisella tularensis, which secretes the virulence factor AcpA, a homologue of SapM, with the same mechanism of catalysis and inhibition. Our findings demonstrate that inhibition of SapM with small molecule inhibitors is efficient in reducing intracellular mycobacterial survival in host macrophages and confirm SapM as a potential therapeutic target. These initial compounds have favourable physico-chemical properties and provide a basis for exploration towards the development of new tuberculosis treatments. The efficacy of a SapM inhibitor in reducing Francisella tularensis intracellular burden suggests the potential for developing broad-spectrum antivirulence agents to treat microbial infections.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Fatores de Virulência/antagonistas & inibidores , Fosfatase Alcalina/antagonistas & inibidores , Francisella tularensis/enzimologia , Humanos , Terapia de Alvo Molecular , Mycobacterium tuberculosis/patogenicidade , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico
5.
Exp Lung Res ; 47(2): 87-97, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33305652

RESUMO

BACKGROUND: Smoking is a cause behind many diseases, including tuberculosis, and it is a risk factor for tuberculosis infection and mortality. Moreover, smoking is associated with a poor tuberculosis treatment outcome. OBJECTIVES: In this study, we focus on the effects of cigarette smoke on an infected cell culture treated with anti-tuberculosis drugs. MATERIALS AND METHODS: Cytotoxicity on THP-1, J774A.1 and MH-S cell lines and growth of Mycobacterium tuberculosis exposed to a reference or a commercial cigarette was evaluated. THP-1 cell line was exposed to cigarette smoke, infected with Mycobacterium tuberculosis and treated with anti-tuberculosis drugs. Apoptosis and death cell were also tested on M. bovis BCG infected cells. Minimal inhibitory concentrations of anti-tuberculosis drugs were analyzed. RESULTS: All cells lines showed viability values higher than 80% when exposed to cigarette smoke extract. However, THP-1 cell line infected with M. bovis BCG and exposed to Marlboro cigarette smoke showed up to a 54% reduction of apoptotic cells than cells unexposed to smoke. M. tuberculosis exposed to Marlboro cigarette smoke for 11 days had an optical density 16% lower than unexposed bacteria. When cells were infected with M. tuberculosis, the intracellular recovery of CFUs showed up to a 0.66 log reduction in cells exposed to cigarette smoke extract because of a potential impairment in the phagocytosis. Macrophages treated with drugs showed up to a 2.55 log reduction in the intracellular load burden compared with non-treated ones. Despite poor treatment outcome on TB smoker patients, minimal inhibitory concentration of rifampicin increased only 2-fold in M. tuberculosis exposed to cigarette smoke. CONCLUSION: Smoking interferes with tuberculosis treatment impairing the immunity of the host.


Assuntos
Mycobacterium tuberculosis , Humanos , Isoniazida/farmacologia , Macrófagos , Rifampina/farmacologia , Fumaça/efeitos adversos , Fumar/efeitos adversos
6.
PLoS One ; 15(2): e0228919, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32040536

RESUMO

Cigarette smoking and tuberculosis are a significant cause of death worldwide. Several epidemiological studies have demonstrated cigarette smoking is a risk factor for tuberculosis. Electronic cigarettes have recently appeared as a healthier alternative to conventional smoking, although their impact in tuberculosis is not well understood. The aim of this study was to explore the effect of electronic cigarettes in phagocytosis of Mycobacterium tuberculosis and cytokines production. In vitro infection was carried out by exposing THP-1 macrophages to four electronic vapor extracts and the intracellular burden of M. tuberculosis was determined. The percentage of infection was evaluated by confocal microscopy and the cytokine production by Luminex. A reduction of intracellular M. tuberculosis burden in THP-1 macrophages was found after its exposure to electronic vapor extract; the same trend was observed by confocal microscopy when Mycobacterium bovis BCG-GFP strain was used. Electronic cigarettes stimulate a pro-inflammatory cytokine response. We conclude that electronic cigarettes impair the phagocytic function and the cytokine response to M. tuberculosis.


Assuntos
Citocinas/biossíntese , Sistemas Eletrônicos de Liberação de Nicotina , Mycobacterium tuberculosis/patogenicidade , Fagocitose , Fumar/efeitos adversos , Sobrevivência Celular , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/imunologia , Fumaça/efeitos adversos , Células THP-1
7.
Nanomedicine (Lond) ; 14(6): 707-726, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30734643

RESUMO

AIM: Production of Matryoshka-type gastroresistant microparticles containing antibiotic-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (NP) against Mycobacterium tuberculosis. MATERIALS & METHODS: The emulsification and evaporation methods were followed for the synthesis of PLGA-NPs and methacrylic acid-ethyl acrylate-based coatings to protect rifampicin from degradation under simulated gastric conditions. RESULTS & CONCLUSION: The inner antibiotic-loaded NPs here reported can be released under simulated intestinal conditions whereas their coating protects them from degradation under simulated gastric conditions. The encapsulation does not hinder the antituberculosis action of the encapsulated antibiotic rifampicin. A sustained antibiotic release could be obtained when using the drug-loaded encapsulated NPs. Compared with the administration of the free drug, a more effective elimination of M. tuberculosis was observed when applying the NPs against infected macrophages. The antibiotic-loaded PLGA-NPs were also able to cross an in vitro model of intestinal barrier.


Assuntos
Antibacterianos/farmacologia , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Antibacterianos/administração & dosagem , Antituberculosos/administração & dosagem , Transporte Biológico , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Microesferas , Tamanho da Partícula , Preparações Farmacêuticas/química , Rifampina/química , Rifampina/farmacologia , Estômago , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA