Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 105(1): 7-21, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33111454

RESUMO

Members of the plant specific RAV family of transcription factors regulate several developmental and physiological processes. In the model plant Arabidopsis thaliana, the RAV TEMPRANILLO 1 (TEM1) and TEM2 control important phase changes such as the juvenile to adult and the vegetative to reproductive transitions. Besides their known regulatory function in plant development, a transcriptomics analysis of transgenic plants overexpressing TEM1 also revealed overrepresentation of Gene Ontology (GO) categories related to abiotic stress responses. Therefore, to investigate the biological relevance of these TEM-dependent transcriptomic changes and elucidate whether TEMs contribute to the modulation of plant growth in response to salinity, we analyzed the behavior of TEM gain and loss of function mutants subjected to mild and high salt stresses at different development stages. With respect to increasing salinity, TEM overexpressing plants were hypersensitive whereas the tem1 tem2 double mutants were more tolerant. Precisely, tem1 tem2 mutants germinated and flowered faster than the wild-type plants under salt stress conditions. Also, tem1 tem2 plants showed a delay in salt-induced leaf senescence, possibly as a consequence of downregulation of jasmonic acid biosynthesis genes. Besides a shorter life cycle and delayed senescence, tem1 tem2 mutants appeared to be better suited to withstand oxidative stress as they accumulated higher levels of α-tocopherol (an important antioxidant metabolite) and displayed a slower degradation of photosynthetic pigments. Taken together, our studies suggest novel and crucial roles for TEM in adaptive growth as they modulate plant development in response to environmental changes such as increasing soil salinity.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Tolerância ao Sal , Fatores Genéricos de Transcrição/fisiologia , Fatores de Transcrição/fisiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo/fisiologia , Estresse Salino , Fatores de Transcrição/metabolismo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo
2.
Plant Biotechnol J ; 19(5): 1008-1021, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33314563

RESUMO

Carotenoids are lipophilic plastidial isoprenoids highly valued as nutrients and natural pigments. A correct balance of chlorophylls and carotenoids is required for photosynthesis and therefore highly regulated, making carotenoid enrichment of green tissues challenging. Here we show that leaf carotenoid levels can be boosted through engineering their biosynthesis outside the chloroplast. Transient expression experiments in Nicotiana benthamiana leaves indicated that high extraplastidial production of carotenoids requires an enhanced supply of their isoprenoid precursors in the cytosol, which was achieved using a deregulated form of the main rate-determining enzyme of the mevalonic acid (MVA) pathway. Constructs encoding bacterial enzymes were used to convert these MVA-derived precursors into carotenoid biosynthetic intermediates that do not normally accumulate in leaves, such as phytoene and lycopene. Cytosolic versions of these enzymes produced extraplastidial carotenoids at levels similar to those of total endogenous (i.e. chloroplast) carotenoids. Strategies to enhance the development of endomembrane structures and lipid bodies as potential extraplastidial carotenoid storage systems were not successful to further increase carotenoid contents. Phytoene was found to be more bioaccessible when accumulated outside plastids, whereas lycopene formed cytosolic crystalloids very similar to those found in the chromoplasts of ripe tomatoes. This extraplastidial production of phytoene and lycopene led to an increased antioxidant capacity of leaves. Finally, we demonstrate that our system can be adapted for the biofortification of leafy vegetables such as lettuce.


Assuntos
Biofortificação , Carotenoides , Cloroplastos , Folhas de Planta , Plastídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA