Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(12): 5552-5558, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38484385

RESUMO

Inducing, understanding, and controlling the flexibility in metal-organic frameworks (MOFs) are of utmost interest due to the potential applications of dynamic materials in gas-related technologies. Herein, we report the synthesis of two isostructural two-dimensional (2D) interweaving zinc(II) MOFs, TMU-27 [Zn(bpipa)(bdc)] and TMU-27-NH2 [Zn(bpipa)(NH2-bdc)], based on N,N'-bis-4-pyridyl-isophthalamide (bpipa) and 1,4-benzenedicarboxylate (bdc) or 2-amino-1,4-benzenedicarboxylate (NH2-bdc), respectively. These frameworks differ only by the substitution at the meta-position of their respective bdc groups: an H atom in TMU-27 vs an NH2 group in TMU-27-NH2. This difference strongly influences their respective responses to external stimuli, since we observed that the structure of TMU-27 changed due to desolvation and adsorption, whereas TMU-27-NH2 remained rigid. Using single-crystal X-ray diffraction and CO2-sorption measurements, we discovered that upon CO2 sorption, TMU-27 undergoes a transition from a closed-pore phase to an open-pore phase. In contrast, we attributed the rigidification in TMU-27-NH2 to intermolecular hydrogen bonding between interweaving layers, namely, between the H atoms from the bdc-amino groups and the O atoms from the bpipa-amide groups within these layers. Additionally, by using scanning electron microscopy to monitor the CO2 adsorption and desorption in TMU-27, we were able to establish a correlation between the crystal size of this MOF and its transformation pressure.

2.
CrystEngComm ; 26(8): 1071-1076, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38384732

RESUMO

Precise control over the crystalline phase and crystallographic orientation within thin films of metal-organic frameworks (MOFs) is highly desirable. Here, we report a comparison of the liquid- and vapour-phase film deposition of two copper-dicarboxylate MOFs starting from an oriented metal hydroxide precursor. X-ray diffraction revealed that the vapour- or liquid-phase reaction of the linker with this precursor results in different crystalline phases, morphologies, and orientations. Pole figure analysis showed that solution-based growth of the MOFs follows the axial texture of the metal hydroxide precursor, resulting in heteroepitaxy. In contrast, the vapour-phase method results in non-epitaxial growth with uniplanar texture only.

3.
Adv Mater ; 36(16): e2310499, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38100276

RESUMO

Today, ≈20% of the electric consumption is devoted to refrigeration; while, ≈50% of the final energy is dedicated to heating applications. In this scenario, many cooling devices and heat-pumps are transitioning toward the use of CO2 as an eco-friendly refrigerant, favoring carbon circular economy. Nevertheless, CO2 still has some limitations, such as large operating pressures (70-150 bar) and a critical point at 31 °C, which compromises efficiency and increases technological complexity. Very recently, an innovative breathing-caloric mechanism in the MIL-53(Al) compound is reported, which implies gas adsorption under CO2 pressurization boosted by structural transitions and which overcomes the limitations of stand-alone CO2. Here, the breathing-caloric-like effects of MOF-508b are reported, surpassing by 40% those of MIL-53(Al). Moreover, the first thermometry device operating at room temperature and under the application of only 26 bar of CO2 is presented. Under those conditions, this material presents values of ΔT ≈ 30 K, reaching heating temperatures of 56 °C and cooling temperatures of -10 °C, which are already useful for space heating, air-conditioning, food refrigeration, and freezing applications.

4.
Dalton Trans ; 52(47): 17873-17880, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37975724

RESUMO

In this work, we investigate the vapor-assisted synthesis of the metal-organic framework MOF-74 starting from three metal oxides (ZnO, CoO, and MgO). Depending on the nature of the added vapor (H2O, DMF, DMSO), the metal oxide, and the temperature, the outcome of the reaction can be directed towards the desired porous phase. Ex situ and in situ XRD measurements reveal the formation of an intermediate phase during the reaction of MgO with H4dobdc, while the MOF-74 phase forms directly for ZnO and CoO. The reduced CO2 uptake of the resulting materials compared to solvothermally prepared MOFs might be offset by the convenience of the presented route and the promise of a high space time yield.

5.
Inorg Chem ; 61(45): 17927-17931, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36326803

RESUMO

A vapor-assisted synthesis method was developed for the metal-organic framework (MOF) HKUST-1 in both powder and film format. The use of a solvent template supplied from the vapor phase is essential to form the framework under these conditions. Chemical vapor deposition of HKUST-1 films (MOF-CVD) results in smooth films that show the expected adsorption behavior. Interestingly, the HKUST-1 films obtained this way show a (111) preferred crystallographic orientation.

6.
Inorg Chem ; 61(43): 17137-17143, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36260857

RESUMO

Composites formed by a metal-organic framework (MOF) and an ionic liquid (IL) are potentially interesting materials for applications ranging from gas separation to electrochemical devices. Consequently, there is a need for robust and low-cost preparation procedures that are compatible with the desired applications. We herein report a solvent-free, one-step, and vapor-based ship-in-bottle synthesis of the IL@MOF composite 1-butyl-3-methylimidazolium bromide@ZIF-8 in powder and thin film forms. In this approach, volatile IL precursors evaporate and subsequently adsorb and react within the MOF cages to form the IL.

7.
Adv Mater ; 33(17): e2006993, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33733524

RESUMO

Thin films of crystalline and porous metal-organic frameworks (MOFs) have great potential in membranes, sensors, and microelectronic chips. While the morphology and crystallinity of MOF films can be evaluated using widely available techniques, characterizing their pore size, pore volume, and specific surface area is challenging due to the low amount of material and substrate effects. Positron annihilation lifetime spectroscopy (PALS) is introduced as a powerful method to obtain pore size information and depth profiling in MOF films. The complementarity of this approach to established physisorption-based methods such as quartz crystal microbalance (QCM) gravimetry, ellipsometric porosimetry (EP), and Kr physisorption (KrP) is illustrated. This comprehensive discussion on MOF thin film porosimetry is supported by experimental data for thin films of ZIF-8.

8.
Talanta ; 215: 120910, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32312454

RESUMO

Chemical vapor deposition of MOFs (MOF-CVD) has been used to coat solid-phase microextraction (SPME) fibers with ZIF-8, by exposing ZnO layers to the linker vapor (2-methylimidazole). This ZIF-8 coating has been used as a seed layer in a following solvothermal MOF growth step in order to increase the ZIF-8 thickness. The combined MOF-CVD and solvothermal growth of ZIF-8 on the fibers result in a thickness of ~3 µm, with adequate thermal stability, and mechanical integrity when tested with methanol and acetonitrile ultrasonic treatments. The fibers have been evaluated in direct immersion mode using gas chromatography and flame ionization detection (GC-FID), for a group of target analytes including three polycyclic aromatic hydrocarbons (PAHs) and five personal care products (PCPs). The optimized conditions of the SPME-GC-FID methods include low amount of aqueous sample (5 mL), stirring for 45 min at 35 °C, and desorption at 280 °C for 5 min. The method presents limits of detection down to 0.6 µg L-1; intra-day, inter-day and inter-batch relative standard deviation values lower than 16%, 19%, and 23%, respectively; and a lifetime higher than 70 cycles.

9.
Chem Commun (Camb) ; 55(68): 10056-10059, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31369024

RESUMO

Copper dicarboxylate metal-organic framework films are deposited via chemical vapour deposition. Uniform films of CuBDC and CuCDC with an out-of-plane orientation and accessible porosity are obtained from the reaction of Cu and CuO with vaporised dicarboxylic acid linkers.

10.
Angew Chem Int Ed Engl ; 58(8): 2423-2427, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30548136

RESUMO

Metal-organic frameworks (MOFs) enable the design of host-guest systems with specific properties. In this work, we show how the confinement of anthracene in a well-chosen MOF host leads to reversible yellow-to-purple photoswitching of the fluorescence emission. This behavior has not been observed before for anthracene, either in pure form or adsorbed in other porous hosts. The photoresponse of the host-guest system is caused by the photodimerization of anthracene, which is greatly facilitated by the pore geometry, connectivity, and volume as well as the structural flexibility of the MOF host. The photoswitching behavior was used to fabricate photopatternable and erasable surfaces that, in combination with data encryption and decryption, hold promise in product authentication and secure communication applications.

11.
Chemistry ; 24(49): 12950-12960, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-29893444

RESUMO

A chiral ZnII porphyrin derivative 1 and its achiral analogue 2 were studied in the solid state. Considering the rich molecular recognition of designed metalloporphyrins 1 and 2 and their tendency to crystallize, they were recrystallized from two solvent mixtures (CH2 Cl2 /CH3 OH and CH2 Cl2 /hexane). As a result, four different crystalline arrangements (1 a,b and 2 a,b, from 0D to 2D) were obtained. Solid-state studies were performed on all the species to analyze the role played by chirality, solvent mixtures, and surfaces (mica and HOPG) in the supramolecular arrangements. By means of combinations of solvents and substrates a variety of microsized species was obtained, from vesicles to flower-shaped arrays, including geometrical microcrystals. Overall, the results emphasize the environmental susceptibility of metalloporphyrins and how this feature must be taken into account in their design.

12.
Dalton Trans ; 46(34): 11166-11170, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28809981

RESUMO

Here, we show that the well-known hydrophobic leucine (Leu) zipper motif (also known as the coiled-coil or Leu scissors motif), typically found in proteins, can be used as a source of inspiration in coordination polymers built from Leu-containing dipeptides or tripeptides. We demonstrate that this motif can be extended to form Velcro-like layers of Leu, and that the hydrophobicity of these layers is transferred to coordination polymers, thereby enabling the development of a new type of hydrophobic materials.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Zíper de Leucina , Peptídeos/química , Polímeros/química , Modelos Moleculares
13.
Inorg Chem ; 56(16): 9698-9709, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28753278

RESUMO

We report design and structural characterization of six new coordination polymers fabricated from PbCl2 and a series of closely related bis-pyridyl ligands LI and HLII-HLVI, namely, [Pb2(LI)Cl4]n, [Pb(HLII)Cl2]n·nMeOH, [Pb(HLIII)Cl2]n·0.5 nMeOH, [Pb2(LIV)Cl3]n, [Pb(HLV)Cl2]n, and [Pb3(LVI)2Cl4]n·nMeOH. The topology of the obtained networks is dictated by the geometry of the organic ligand. The structure of [Pb2(LI)Cl4]n is constructed from the [PbCl2]n two-dimensional (2D) sheets, linked through organic linkers into a three-dimensional framework, which exhibits a unique binodal 4,7-connected three-periodic topology named by us as sda1. Topological analysis of the 2D metal-organic sheet in [Pb(HLII)Cl2]n·nMeOH discloses a binodal 3,4-connected layer topology, regardless of the presence of tetrel bonds. A one-dimensional (1D) coordination polymer [Pb(HLIII)Cl2]n·0.5 nMeOH is considered as a uninodal 2-connected chain. The overall structure of [Pb2(LIV)Cl3]n is constructed from dimeric tetranuclear [Pb4(µ3-LIV-κ6N:N':N″:µ3-O)2(µ4-Cl)(µ2-Cl)2]3+ cationic blocks linked in a zigzag manner through bridging µ2-Cl- ligands, yielding a 1D polymeric chain. Topological analysis of this chain reveals a unique pentanodal 3,4,4,5,6-connected chain topology named by us as sda2. The structure of [Pb(HLV)Cl2]n exhibits a 1D zigzaglike polymeric chain. Two chains are further linked into a 1D gridlike ribbon through the dimeric [Pb2(µ2-Cl)2Cl2] blocks as bridging nodes. With the bulkiest ligand HLVI, a 2D layered coordination polymer [Pb3(LVI)2Cl4]n·nMeOH is formed, which network, considering all tetrel bonds, reveals a unique heptanodal 3,3,3,3,4,5,5-connected layer topology named by us as sda3. Compounds [Pb2(LI)Cl4]n, [Pb2(LIV)Cl3]n, and [Pb(HLV)Cl2]n were found to be emissive in the solid state at ambient temperature. While blue emission of [Pb2(LI)Cl4]n is due to the ligand-centered transitions, bluish-green and white luminescence of [Pb2(LIV)Cl3]n and [Pb(HLV)Cl2]n, respectively, was assigned to ligand-to-metal charge transfer mixed with metal-centered excited states. Molecular as well as periodic calculations were additionally applied to characterize the obtained polymers.

14.
J Am Chem Soc ; 139(2): 897-903, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28045517

RESUMO

Covalent postsynthetic modification (PSM) of metal-organic frameworks (MOFs) has attracted much attention due to the possibility of tailoring the properties of these porous materials. Schiff-base condensation between an amine and an aldehyde is one of the most common reactions in the PSM of MOFs. Here, we report the use of the spray drying technique to perform this class of organic reactions, either between discrete organic molecules or on the pore surfaces of MOFs, in a very fast (1-2 s) and continuous way. Using spray drying, we show the PSM of two MOFs, the amine-terminated UiO-66-NH2 and the aldehyde-terminated ZIF-90, achieving conversion efficiencies up to 20 and 42%, respectively. Moreover, we demonstrate that it can also be used to postsynthetically cross-link the aldehyde groups of ZIF-90 using a diamine molecule with a conversion efficiency of 70%.

15.
Angew Chem Int Ed Engl ; 55(52): 16049-16053, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-27891752

RESUMO

Materials with surfaces that can be switched from high/superhydrophobicity to superhydrophilicity are useful for myriad applications. Herein, we report a metal-organic framework (MOF) assembled from ZnII ions, 1,4-benzenedicarboxylate, and a hydrophobic carborane-based linker. The MOF crystal-surface can be switched between hydrophobic and superhydrophilic through a chemical treatment to remove some of the building blocks.

16.
Chem Commun (Camb) ; 52(45): 7229-32, 2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-27228426

RESUMO

Herein we report a study on water adsorption/desorption-triggered single-crystal to single-crystal transformations in a MOF, by single-crystal and humidity-controlled powder X-ray diffraction and water-sorption measurements. We identified a gate-opening effect at a relative humidity of 85% upon water adsorption, and a gate-closure effect at a relative humidity of 55 to 77% upon water desorption. This reversible breathing effect between the "open" and the "closed" structures of the MOF involves the cleavage and formation of several coordination bonds.

17.
Chemistry ; 22(5): 1847-53, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26671639

RESUMO

Materials based on the cationic copper(II) hexanuclear 18-membered metallacrown [18-MCCuII-N(2ph)-6](6+) (2phH=2-piconyl hydrazide) and tetrafluoroborate, perchlorate, nitrate, sulfate, and perrhenate anions were prepared by an easy method in aqueous medium. Single-crystal X-ray characterization of six members of this new family of complexes showed that the anions are attached to the metallacrown by direct coordination to a copper cation or by hydrogen-bonding interaction with the center of the hexamer. The stable cationic nature of the complexes and their ability to bind different anions allows them to adsorb and immobilize environmentally relevant anions such as MO4(-) (M=Tc, Re). The MO4(-) trapping capacities suggest that these materials would be useful in the treatment of oxoanionic contaminants in water.

18.
Chemistry ; 21(17): 6605-16, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25760669

RESUMO

Nine new coordination compounds have been synthesized by the reaction of salts of bivalent metal ions (a=Zn(II) , b=Cu(II) , c=Ni(II) , d=Co(II) ) with the bis(benzoylhydrazone) derivative of 4,6-diacetylresorcinol (H4 L). Three kinds of complexes have been obtained: homodinuclear compounds [M2 (H2 L)2 ]⋅nH2 O (1 a, 1 b, 1 c, and 1 d), homotetranuclear compounds [M4 (L)2 ]⋅n(solv) (2 a and 2 c), and heterotetranuclear compounds [Zn2 M2 (L)2 ]⋅n(solv) (2 ab, 2 ac, and 2 ad). The structures of the free ligand H4 L⋅2 DMSO and its complexes [Zn2 (H2 L)2 (DMSO)2 ] (1 a*), [Zn4 (L)2 (DMSO)6 ] (2 a*), and [Zn0.45 Cu3.55 (L)2 (DMSO)6 ]⋅2 DMSO (2 ab*) were elucidated by single-crystal X-ray diffraction. The ligand shows luminescence properties and its fluorimetric behavior towards M(II) metals (M=Zn, Cu, Ni and Co) has been studied. Furthermore, the solid-state luminescence properties of the ligand and compounds have been determined at room temperature. (1) H NMR spectroscopic monitoring of the reaction of H4 L with Zn(II) showed the deprotonation sequence of the OH/NH groups upon metal coordination. Heteronuclear reactions have also been monitored by using ESI-MS and spectrofluorimetric techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA