Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
IDCases ; 36: e01987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779143

RESUMO

Hypervirulent K. pneumoniae infection has been raising worldwide and is one of the major causes of community-acquired pyogenic liver abscess. We described a case report of pyogenic liver abscess caused by an atypical hypervirulent (non-hypermucoviscous) K. pneumoniae K1 ST23 in a diabetic Asian patient who resided in Mexico. The susceptibility to antimicrobials, pathogenicity, molecular and genomic analysis were determined. A man from Guangdong (China) with a recent diagnosis of diabetes mellitus was admitted to the hospital, and he denied traveling in the last 3 months. A computed tomography revealed a right lobe liver abscess. On the third day after admission a Klebsiella pneumoniae isolate (14652) was obtained. The isolate corresponded to a susceptible K. pneumoniae with capsular type K1 and ST23 (CG23) and exhibited a non-hypermucoviscous phenotype. The isolate 14652 was genetically related to the globally distributed lineage ST23-KL1. This study describes the first case in Mexico of K. pneumoniae capsular type K1 and ST23 with an atypical hypervirulent phenotype.

2.
Sci Rep ; 14(1): 5876, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467675

RESUMO

Here, we conducted a comprehensive analysis of 356 Klebsiella pneumoniae species complex (KpSC) isolates that were classified as classical (cl), presumptive hypervirulent (p-hv) and hypermucoviscous-like (hmv-like). Overall, K. pneumoniae (82.3%), K. variicola (2.5%) and K. quasipneumoniae (2.5%) were identified. These isolates comprised 321 cl-KpSC, 7 p-hv-KpSC and 18 hmv-like-KpSC. A large proportion of cl-KpSC isolates were extended-spectrum-ß-lactamases (ESBLs)-producers (64.4%) and 3.4% of isolates were colistin-resistant carrying carbapenemase and ESBL genes. All p-hv-KpSC showed an antibiotic susceptible phenotype and hmv-like isolates were found to be ESBL-producers (8/18). Assays for capsule production and capsule-dependent virulence phenotypes and whole-genome sequencing (WGS) were performed in a subset of isolates. Capsule amount differed in all p-hv strains and hmv-like produced higher capsule amounts than cl strains; these variations had important implications in phagocytosis and virulence. Murine sepsis model showed that most cl strains were nonlethal and the hmv-like caused 100% mortality with 3 × 108 CFUs. Unexpectedly, 3/7 (42.9%) of p-hv strains required 108 CFUs to cause 100% mortality (atypical hypervirulent), and 4/7 (57.1%) strains were considered truly hypervirulent (hv). Genomic analyses confirmed the diverse population, including isolates belonging to hv clonal groups (CG) CG23, CG86, CG380 and CG25 (this corresponded to the ST3999 a novel hv clone) and MDR clones such as CG258 and CG147 (ST392) among others. We noted that the hmv-like and hv-ST3999 isolates showed a close phylogenetic relationship with cl-MDR K. pneumoniae. The information collected here is important to understand the evolution of clinically important phenotypes such as hypervirulent and ESBL-producing-hypermucoviscous-like amongst the KpSC in Mexican healthcare settings. Likewise, this study shows that mgrB inactivation is the main mechanism of colistin resistance in K. pneumoniae isolates from Mexico.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Camundongos , Klebsiella , Colistina , Filogenia , beta-Lactamases/genética , Antibacterianos/farmacologia , Fenótipo , Testes de Sensibilidade Microbiana
3.
Antibiotics (Basel) ; 12(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38136696

RESUMO

Salmonella isolated from dairy farms has a significant effect on animal health and productivity. Different serogroups of Salmonella affect both human and bovine cattle causing illness in both reservoirs. Dairy cows and calves can be silent Salmonella shedders, increasing the possibility of dispensing Salmonella within the farm. The aim of this study was to determine the genomic characteristics of Salmonella isolates from dairy farms and to detect the presence of virulence and antimicrobial resistance genes. A total of 377 samples were collected in a cross-sectional study from calves, periparturient cow feces, and maternity beds in 55 dairy farms from the states of Aguascalientes, Baja California, Chihuahua, Coahuila, Durango, Mexico, Guanajuato, Hidalgo, Jalisco, Queretaro, San Luis Potosi, Tlaxcala, and Zacatecas. Twenty Salmonella isolates were selected as representative strains for whole genome sequencing. The serological classification of the strains was able to assign groups to only 12 isolates, but with only 5 of those being consistent with the genomic serotyping. The most prevalent serovar was Salmonella Montevideo followed by Salmonella Meleagridis. All isolates presented the chromosomal aac(6')-Iaa gene that confers resistance to aminoglycosides. The antibiotic resistance genes qnrB19, qnrA1, sul2, aph(6)-Id, aph(3)-ld, dfrA1, tetA, tetC, flor2, sul1_15, mph(A), aadA2, blaCARB, and qacE were identified. Ten pathogenicity islands were identified, and the most prevalent plasmid was Col(pHAD28). The main source of Salmonella enterica is the maternity areas, where periparturient shedders are contaminants and perpetuate the pathogen within the dairy in manure, sand, and concrete surfaces. This study demonstrated the necessity of implementing One Health control actions to diminish the prevalence of antimicrobial resistant and virulent pathogens including Salmonella.

4.
BMC Res Notes ; 16(1): 334, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964369

RESUMO

OBJECTIVES: The hypermucoviscous-like phenotype has been described in Klebsiella pneumoniae species complex (KpSC) and was described as a contributor of increased virulence. This study described the characterization and whole-genome sequencing of an antibiotic susceptible and hypermucoviscous-like Klebsiella michiganensis 9273 clinical isolate. DATA DESCRIPTION: Here, we report the genome sequence of a K. michiganensis clinical isolate obtained from a urinary tract infection exhibiting the hypermucoviscous-like phenotype. The draft genome sequence consisted of 145 contigs and ~ 6.6 Mb genome size. The annotation revealed 6648 coding DNA sequences and 56 tRNA genes. The strain belongs to the sequence type (ST) 50, and the OXY-1 beta-lactam resistance gene, aph(3')-Ia gene for aminoglycoside resistance and multidrug efflux pumps were identified. The fyuA siderophore receptor of yersiniabactin siderophore was identified. Increased virulence was observed in Galleria mellonella larvae model and increased capsule production was determined by uronic acid quantification. The clinical implications of this phenotype are unknown, but the patient outcome might worsen compared to susceptible- or MDR-classical K. michiganensis isolates.


Assuntos
Infecções por Klebsiella , Sideróforos , Humanos , Klebsiella pneumoniae , Antibacterianos/farmacologia , beta-Lactamases/genética
5.
Microbiol Resour Announc ; 12(5): e0009623, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37010430

RESUMO

Here, we report the draft genome sequences of 4 Bordetella pertussis isolates which correspond to major clones isolated between 2008 and 2014 from two outbreaks in northeastern Mexico. The B. pertussis clinical isolates belong to the ptxP3 lineage, and they are grouped into two major clusters, defined by the fimH allele.

6.
J Glob Antimicrob Resist ; 33: 61-71, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878463

RESUMO

OBJECTIVES: To determine genomic characteristics and molecular epidemiology of carbapenem non-susceptible Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa from medical centres of Mexico using whole genome sequencing data analysed with the EPISEQⓇ CS application and other bioinformatic platforms. METHODS: Clinical isolates collected from 28 centres in Mexico included carbapenem-non-susceptible K. pneumoniae (n = 22), E. coli (n = 24), A. baumannii (n = 16), and P. aeruginosa (n = 13). Isolates were subjected to whole genome sequencing using the Illumina (MiSeq) platform. FASTQ files were uploaded to the EPISEQⓇ CS application for analysis. Additionally, the tools Kleborate v2.0.4 and Pathogenwatch were used as comparators for Klebsiella genomes, and the bacterial whole genome sequence typing database was used for E. coli and A. baumannii. RESULTS: For K. pneumoniae, both bioinformatic approaches detected multiple genes encoding aminoglycoside, quinolone, and phenicol resistance, and the presence of blaNDM-1 explained carbapenem non-susceptibility in 18 strains and blaKPC-3 in four strains. Regarding E. coli, both EPISEQⓇ CS and bacterial whole genome sequence typing database analyses detected multiple virulence and resistance genes: 20 of 24 (83.3%) strains carried blaNDM, 3 of 24 (12.4%) carried blaOXA-232, and 1 carried blaOXA-181. Genes that confer resistance to aminoglycosides, tetracyclines, sulfonamides, phenicols, trimethoprim, and macrolides were also detected by both platforms. Regarding A. baumannii, the most frequent carbapenemase-encoding gene detected by both platforms was blaOXA-72, followed by blaOXA-66. Both approaches detected similar genes for aminoglycosides, carbapenems, tetracyclines, phenicols, and sulfonamides. Regarding P. aeruginosa, blaVIM, blaIMP, and blaGES were the more frequently detected. Multiple virulence genes were detected in all strains. CONCLUSION: Compared to the other available platforms, EPISEQⓇ CS enabled a comprehensive resistance and virulence analysis, providing a reliable method for bacterial strain typing and characterization of the virulome and resistome.


Assuntos
Antibacterianos , Escherichia coli , Escherichia coli/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas , Carbapenêmicos , Klebsiella pneumoniae , Aminoglicosídeos , Pseudomonas aeruginosa/genética , Biologia Computacional
7.
Int Microbiol ; 26(4): 917-927, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36971854

RESUMO

Plasmids play a fundamental role in the evolution of bacteria by allowing them to adapt to different environments and acquire, through horizontal transfer, genes that confer resistance to different classes of antibiotics. Using the available in vitro and in silico plasmid typing systems, we analyzed a set of isolates and public genomes of K. variicola to study its plasmid diversity. The resistome, the plasmid multilocus sequence typing (pMLST), and molecular epidemiology using the MLST system were also studied. A high frequency of IncF plasmids from human isolates but lower frequency from plant isolates were found in our strain collection. In silico detection revealed 297 incompatibility (Inc) groups, but the IncFIBK (216/297) predominated in plasmids from human and environmental samples, followed by IncFIIK (89/297) and IncFIA/FIA(HI1) (75/297). These Inc groups were associated with clinically important ESBL (CTX-M-15), carbapenemases (KPC-2 and NDM-1), and colistin-resistant genes which were associated with major sequence types (ST): ST60, ST20, and ST10. In silico MOB typing showed 76% (311/404) of the genomes contained one or more of the six relaxase families with MOBF being most abundant. We identified untypeable plasmids carrying blaKPC-2, blaIMP-1, and blaSHV-187 but for which a relaxase was found; this may suggest that novel plasmid structures could be emerging in this bacterial species. The plasmid content in K. variicola has limited diversity, predominantly composed of IncFIBK plasmids dispersed in different STs. Plasmid detection using the replicon and MOB typing scheme provide a broader context of the plasmids in K. variicola. This study showed that whole-sequence-based typing provides current insights of the prevalence of plasmid types and their association with antimicrobial resistant genes in K. variicola obtained from humans and environmental niches.


Assuntos
Infecções por Klebsiella , Klebsiella , Humanos , Tipagem de Sequências Multilocus , Klebsiella/genética , Plasmídeos/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana
8.
Microb Drug Resist ; 29(6): 239-248, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36595348

RESUMO

In this study, we report the carbapenemase-encoding genes and colistin resistance in Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa in the second year of the COVID-19 pandemic. Clinical isolates included carbapenem-resistant K. pneumoniae, carbapenem-resistant E. coli, carbapenem-resistant A. baumannii, and carbapenem-resistant P. aeruginosa. Carbapenemase-encoding genes were detected by PCR. Carbapenem-resistant K. pneumoniae and carbapenem-resistant E. coli isolates were analyzed using the Rapid Polymyxin NP assay. mcr genes were screened by PCR. Pulsed-field gel electrophoresis and whole-genome sequencing were performed on representative isolates. A total of 80 carbapenem-resistant E. coli, 103 carbapenem-resistant K. pneumoniae, 284 carbapenem-resistant A. baumannii, and 129 carbapenem-resistant P. aeruginosa isolates were recovered. All carbapenem-resistant E. coli and carbapenem-resistant K. pneumoniae isolates were included for further analysis. A selection of carbapenem-resistant A. baumannii and carbapenem-resistant P. aeruginosa strains was further analyzed (86 carbapenem-resistant A. baumannii and 82 carbapenem-resistant P. aeruginosa). Among carbapenem-resistant K. pneumoniae and carbapenem-resistant E. coli isolates, the most frequent gene was blaNDM (86/103 [83.5%] and 72/80 [90%], respectively). For carbapenem-resistant A. baumannii, the most frequently detected gene was blaOXA-40 (52/86, 60.5%), and for carbapenem-resistant P. aeruginosa, was blaVIM (19/82, 23.2%). For carbapenem-resistant A. baumannii, five indistinguishable pulsotypes were detected. Circulation of K. pneumoniae New Delhi metallo-ß-lactamase (NDM) and E. coli NDM was detected in Mexico. High virulence sequence types (STs), such as K. pneumoniae ST307, E. coli ST167, P. aeruginosa ST111, and A. baumannii ST2, were detected. Among K. pneumoniae isolates, 18/101 (17.8%) were positive for the Polymyxin NP test (two, 11.0% positive for the mcr-1 gene, and one, 5.6% with disruption of the mgrB gene). All E. coli isolates were negative for the Polymyxin NP test. In conclusion, K. pneumoniae NDM and E. coli NDM were detected in Mexico, with the circulation of highly virulent STs. These results are relevant in clinical practice to guide antibiotic therapies considering the molecular mechanisms of resistance to carbapenems.


Assuntos
COVID-19 , Colistina , Humanos , Colistina/farmacologia , Antibacterianos/farmacologia , Escherichia coli/genética , México/epidemiologia , Pandemias , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , COVID-19/epidemiologia , beta-Lactamases/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Bactérias Gram-Negativas , Klebsiella pneumoniae , Pseudomonas aeruginosa/genética
9.
Antibiotics (Basel) ; 11(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35203760

RESUMO

The use of colistin in food-producing animals favors the emergence and spread of colistin-resistant strains. Here, we investigated the occurrence and molecular mechanisms of colistin resistance among E. coli isolates from a Mexican piglet farm. A collection of 175 cephalosporin-resistant colonies from swine fecal samples were recovered. The colistin resistance phenotype was identified by rapid polymyxin test and the mcr-type genes were screened by PCR. We assessed the colistin-resistant strains by antimicrobial susceptibility test, pulse-field gel electrophoresis, plasmid profile, and mating experiments. Whole-Genome Sequencing data was used to explore the resistome, virulome, and mobilome of colistin-resistant strains. A total of four colistin-resistant E. coli were identified from the cefotaxime-resistant colonies. All harbored the plasmid-borne mcr-1 gene, which was located on conjugative 170-kb IncHI-2 plasmid co-carrying ESBLs genes. Thus, high antimicrobial resistance rates were observed for several antibiotic families. In the RC2-007 strain, the mcr-1 gene was located as part of a prophage carried on non-conjugative 100-kb-plasmid, which upon being transformed into K. variicola strain increased the polymyxin resistance 2-fold. The genomic analysis showed a broad resistome and virulome. Our findings suggest that colistin resistance followed independent acquisition pathways as clonal and non-genetically related mcr-1-harboring strains were identified. These E. coli isolates represent a reservoir of antibiotic resistance and virulence genes in animals for human consumption which could be potentially propagated into other interfaces.

10.
Braz J Microbiol ; 52(4): 2233-2245, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34626346

RESUMO

Klebsiella variicola has been found in various natural niches, alone or in association with other bacteria, and causes diseases in animals and plants with important economic and environmental impacts. K. variicola has the capacity to fix nitrogen in the rhizosphere and soil; produces indole acetic acid, acetoin, and ammonia; and dissolves phosphorus and potassium, which play an important role in plant growth promotion and nutrition. Some members of K. variicola have properties such as halotolerance and alkalotolerance, conferring an evolutionary advantage. In the environmental protection, K. variicola can be used in the wastewater treatment, biodegradation, and bioremediation of polluted soil, either alone or in association with other organisms. In addition, it has the potential to carry out industrial processes in the food and pharmaceutical industries, like the production of maltose and glucose by the catalysis of debranching unmodified oligosaccharides by the pullulanase enzyme. Finally, this bacterium has the ability to transform chemical energy into electrical energy, such as a biocatalyst, which could be useful in the near future. These properties show that K. variicola should be considered an eco-friendly bacterium with hopeful technological promise. In this review, we explore the most significant aspects of K. variicola and highlight its potential applications in environmental and biotechnological processes.


Assuntos
Biodegradação Ambiental , Microbiologia Ambiental , Animais , Klebsiella/fisiologia , Rizosfera
11.
Microbiol Resour Announc ; 10(26): e0032921, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34197204

RESUMO

Klebsiella variicola F2R9 was isolated from banana root, and its sequence has been deposited as ATCC BAA-830. It corresponds to sequence type 11 (ST11) and KL16 and contains no identifiable plasmids. The genome showed few antimicrobial resistance and virulence genes and several plant association genes. The strain showed susceptibility to most antimicrobials and avirulent behavior.

12.
Front Microbiol ; 11: 579612, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391198

RESUMO

Hypermucoviscosity (hmv) is a capsule-associated phenotype usually linked with hypervirulent Klebsiella pneumoniae strains. The key components of this phenotype are the RmpADC proteins contained in non-transmissible plasmids identified and studied in K. pneumoniae. Klebsiella variicola is closely related to K. pneumoniae and recently has been identified as an emergent human pathogen. K. variicola normally contains plasmids, some of them carrying antibiotic resistance and virulence genes. Previously, we described a K. variicola clinical isolate showing an hmv-like phenotype that harbors a 343-kb pKV8917 plasmid. Here, we investigated whether pKV8917 plasmid carried by K. variicola 8917 is linked with the hmv-like phenotype and its contribution to virulence. We found that curing the 343-kb pKV8917 plasmid caused the loss of hmv, a reduction in capsular polysaccharide (P < 0.001) and virulence. In addition, pKV8917 was successfully transferred to Escherichia coli and K. variicola strains via conjugation. Notably, when pKV8917 was transferred to K. variicola, the transconjugants displayed an hmv-like phenotype, and capsule production and virulence increased; these phenotypes were not observed in the E. coli transconjugants. These data suggest that the pKV8917 plasmid carries novel hmv and capsule determinants. Whole-plasmid sequencing and analysis revealed that pKV8917 does not contain rmpADC/rmpA2 genes; thus, an alternative mechanism was searched. The 343-kb plasmid contains an IncFIB backbone and shares a region of ∼150 kb with a 99% identity and 49% coverage with a virulence plasmid from hypervirulent K. variicola and multidrug-resistant K. pneumoniae. The pKV8917-unique region harbors a cellulose biosynthesis cluster (bcs), fructose- and sucrose-specific (fru/scr) phosphotransferase systems, and the transcriptional regulators araC and iclR, respectively, involved in membrane permeability. The hmv-like phenotype has been identified more frequently, and recent evidence supports the existence of rmpADC/rmpA2-independent hmv-like pathways in this bacterial genus.

13.
Emerg Microbes Infect ; 8(1): 973-988, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31259664

RESUMO

The Klebsiella pneumoniae complex comprises seven K. pneumoniae-related species, including K. variicola. K. variicola is a versatile bacterium capable of colonizing different hosts such as plants, humans, insects and animals. Currently, K. variicola is gaining recognition as a cause of several human infections; nevertheless, its virulence profile is not fully characterized. The clinical significance of K. variicola infection is hidden by imprecise detection methods that underestimate its real prevalence; however, several methods have been developed to correctly identify this species. Recent studies of carbapenemase-producing and colistin-resistant strains demonstrate a potential reservoir of multidrug-resistant genes. This finding presents an imminent scenario for spreading antimicrobial resistant genes among close relatives and, more concerningly, in clinical and environmental settings. Since K. variicola was identified as a novel bacterial species, different research groups have contributed findings elucidating this pathogen; however, important details about its epidemiology, pathogenesis and ecology are still missing. This review highlights the most significant aspects of K. variicola, discussing its different phenotypes, mechanisms of resistance, and virulence traits, as well as the types of infections associated with this pathogen.


Assuntos
Doenças Transmissíveis Emergentes/microbiologia , Infecções por Klebsiella/microbiologia , Klebsiella/fisiologia , Animais , Antibacterianos/farmacologia , Doenças Transmissíveis Emergentes/epidemiologia , Farmacorresistência Bacteriana Múltipla , Humanos , Klebsiella/efeitos dos fármacos , Klebsiella/genética , Klebsiella/isolamento & purificação , Infecções por Klebsiella/epidemiologia
14.
Sci Rep ; 9(1): 10610, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337792

RESUMO

Klebsiella variicola is considered an emerging pathogen in humans and has been described in different environments. K. variicola belongs to Klebsiella pneumoniae complex, which has expanded the taxonomic classification and hindered epidemiological and evolutionary studies. The present work describes the molecular epidemiology of K. variicola based on MultiLocus Sequence Typing (MLST) developed for this purpose. In total, 226 genomes obtained from public data bases and 28 isolates were evaluated, which were mainly obtained from humans, followed by plants, various animals, the environment and insects. A total 166 distinct sequence types (STs) were identified, with 39 STs comprising at least two isolates. The molecular epidemiology of K. variicola showed a global distribution for some STs was observed, and in some cases, isolates obtained from different sources belong to the same ST. Several examples of isolates corresponding to kingdom-crossing bacteria from plants to humans were identified, establishing this as a possible route of transmission. goeBURST analysis identified Clonal Complex 1 (CC1) as the clone with the greatest distribution. Whole-genome sequencing of K. variicola isolates revealed extended-spectrum ß-lactamase- and carbapenemase-producing strains with an increase in pathogenicity. MLST of K. variicola is a strong molecular epidemiological tool that allows following the evolution of this bacterial species obtained from different environments.


Assuntos
Infecções por Klebsiella/epidemiologia , Klebsiella/genética , Genoma Bacteriano/genética , Humanos , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Filogenia
15.
J Chemother ; 31(6): 349-353, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31046636

RESUMO

Carbapenem-resistant Gram-negative bacteria isolated in Venezuela have been poorly characterized. The present study characterized a total of 34 isolates obtained from 27 patients; five of these patients were multi-infected. The bacterial species identified were Klebsiella pneumoniae (17), Pseudomonas aeruginosa (9), and Acinetobacter baumannii (8). From these isolates, 85% were identified as carbapenemase-producing bacteria, and the identified carbapenemase genes were blaKPC-2 (10/29 [34.4%]), blaVIM-type (7/29 [24.1%]), blaOXA-23 (7/29 [24.1%]), blaNDM-1 (8/29 [27.5%]), and the coexistence of blaOXA-23/blaNDM-1 (2/29 [6.8%]). Patient 1 was multi-infected by K. pneumoniae ST11 and ST2413 isolates harbouring the blaNDM-1 and blaKPC-2 genes, respectively. The other patients were multi-infected by two or three different bacterial species such as ESBL-producing K. pneumoniae isolates, P. aeruginosa harbouring the blaVIM-type gene, K. pneumoniae ST147 harbouring the blaKPC-2 gene and by A. baumannii harbouring the blaOXA-23 gene. The blaNDM-1 gene in A. baumannii is flanked by an uncommon genetic structure, whereas blaNDM-1 gene in K. pneumoniae revealed a common structure described in different plasmids from Enterobacteriaceae isolates. This study provides new information about the epidemiology of carbapenemase-producing bacteria in clinical setting in Venezuela.


Assuntos
Proteínas de Bactérias/biossíntese , Bactérias Gram-Negativas/genética , Resistência beta-Lactâmica/genética , beta-Lactamases/biossíntese , Acinetobacter baumannii , Adulto , Feminino , Genes Bacterianos/genética , Bactérias Gram-Negativas/enzimologia , Humanos , Klebsiella pneumoniae , Masculino , Pessoa de Meia-Idade , Pseudomonas aeruginosa , Venezuela
16.
Salud Publica Mex ; 60(1): 56-62, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29689657

RESUMO

OBJECTIVE: Due to the fact that K. variicola, K. quasipneumoniae and K. pneumoniae are closely related bacterial species, misclassification can occur due to mistakes either in normal biochemical tests or during submission to public databases. The objective of this work was to identify K. variicola and K. quasipneumoniae genomes misclassified in GenBank database. MATERIALS AND METHODS: Both rpoB phylogenies and average nucleotide identity (ANI) were used to identify a significant number of misclassified Klebsiella spp. genomes. RESULTS: Here we report an update of K. variicola and K. Quasipneumoniae genomes correctly classified and a list of isolated genomes obtained from humans, plants, animals and insects, described originally as K. pneumoniae or K. variicola, but known now to be misclassified. CONCLUSIONS: This work contributes to recognize the extensive presence of K. variicola and K. quasipneumoniae isolates in diverse sites and samples.


Assuntos
Técnicas de Tipagem Bacteriana , Genoma Bacteriano , Insetos/microbiologia , Infecções por Klebsiella/microbiologia , Klebsiella/classificação , Plantas/microbiologia , Ursidae/microbiologia , Animais , DNA Bacteriano , Humanos , Klebsiella/genética , Klebsiella/isolamento & purificação , Infecções por Klebsiella/veterinária , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
17.
Salud Publica Mex ; 60(1): 29-40, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29689654

RESUMO

OBJECTIVE: To compare the genetic determinants involved in plant colonization or virulence in the reported genomes of K. variicola, K. quasipneumoniae and K. pneumoniae. MATERIALS AND METHODS: In silico comparisons and Jaccard analysis of genomic data were used. Fimbrial genes were detected by PCR. Biological assays were performed with plant and clinical isolates. RESULTS: Plant colonization genes such as cellulases, catalases and hemagglutinins were mainly present in K. variicola genomes. Chromosomal ß-lactamases were characteristic of this species and had been previously misclassified. K. variicola and K. pneumoniae isolates produced plant hormones. CONCLUSIONS: A mosaic distribution of different virulence- and plant-associated genes was found in K. variicola and in K. quasipneumoniae genomes. Some plant colonizing genes were found mainly in K. variicola genomes. The term plantanosis is proposed for plant-borne human infections.


Assuntos
Infecções por Klebsiella/microbiologia , Klebsiella/fisiologia , Plantas/microbiologia , Adaptação Biológica/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Simulação por Computador , Reservatórios de Doenças , Farmacorresistência Bacteriana Múltipla , Ontologia Genética , Genes Bacterianos , Genoma Bacteriano , Humanos , Klebsiella/enzimologia , Klebsiella/genética , Klebsiella/patogenicidade , Virulência/genética
18.
Genome Announc ; 6(12)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29567733

RESUMO

Endophytic Klebsiella variicola KvMx2 and Klebsiella pneumoniae KpMx1 isolates obtained from the same sugarcane stem were used for whole-genome sequencing. The genomes revealed clear differences in essential genes for plant growth, development, and detoxification, as well as nitrogen fixation, catalases, cellulases, and shared virulence factors described in the K. pneumoniae pathogen.

19.
Genome Announc ; 6(10)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29519827

RESUMO

A colistin-resistant mcr-1-carrying Escherichia coli strain, RC2-007, was isolated from a swine farm in Mexico. This extraintestinal and uropathogenic strain of E. coli belongs to serotype O89:H9 and sequence type 744. Assembly and annotation resulted in a 4.9-Mb draft genome that revealed the presence of plasmid-mediated mcr-1-ISApI1 genes as part of a prophage.

20.
Salud pública Méx ; 60(1): 29-40, Jan.-Feb. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-903844

RESUMO

Abstract: Objective: To compare the genetic determinants involved in plant colonization or virulence in the reported genomes of K. variicola, K. quasipneumoniae and K. pneumoniae. Materials and methods: In silico comparisons and Jaccard analysis of genomic data were used. Fimbrial genes were detected by PCR. Biological assays were performed with plant and clinical isolates. Results: Plant colonization genes such as cellulases, catalases and hemagglutinins were mainly present in K. variicola genomes. Chromosomal β-lactamases were characteristic of this species and had been previously misclassified. K. variicola and K. pneumoniae isolates produced plant hormones. Conclusions: A mosaic distribution of different virulence- and plant-associated genes was found in K. variicola and in K. quasipneumoniae genomes. Some plant colonizing genes were found mainly in K. variicola genomes. The term plantanosis is proposed for plant-borne human infections.


Resumen: Objetivo: Comparar genes de colonización de plantas o de virulencia en los genomas reportados de K. variicola, K. quasipneumoniae y K. pneumoniae. Material y métodos: Se utilizaron análisis in silico y de Jaccard. Por PCR se detectaron genes de fimbrias. Se realizaron ensayos biológicos con aislados de plantas y clínicos. Resultados: Los genes de colonización de plantas como celulasas, catalasas y hemaglutininas se encontraron principalmente en genomas de K. variicola. Las β-lactamasas cromosómicas son características de la especie y en algunos casos estaban mal clasificadas. K. variicola y K. pneumoniae producen hormonas vegetales. Conclusiones: Se encontró una distribución en mosaico de los genes de asociación con plantas y de virulencia en K. variicola y K. quasipneumoniae. Principalmente en K. variicola se encontraron algunos genes involucrados en la colonización de plantas. Se propone el término plantanosis para las infecciones humanas de origen vegetal.


Assuntos
Humanos , Plantas/microbiologia , Infecções por Klebsiella/microbiologia , Klebsiella/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Bactérias/genética , Virulência/genética , Simulação por Computador , Reservatórios de Doenças , Adaptação Biológica/genética , Genoma Bacteriano , Farmacorresistência Bacteriana Múltipla , Ontologia Genética , Genes Bacterianos , Klebsiella/enzimologia , Klebsiella/genética , Klebsiella/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA