Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543985

RESUMO

Chestnut and chestnut byproducts are of worldwide interest, so there is a constant need to develop faster and more accurate monitoring techniques. Recent advances in simultaneous localization and mapping (SLAM) algorithms and user accessibility have led to increased use of handheld mobile laser scanning (HHLS) in precision agriculture. We propose a tree growth monitoring methodology, based on HHLS point cloud processing, that calculates the length of branches through spatial discretization of the point cloud for each tree. The methodology was tested by comparing two point clouds collected almost simultaneously for each of a set of sweet chestnut trees. The results obtained indicated that our HHLS method was reliable and accurate in efficiently monitoring sweet chestnut tree growth. The same methodology was used to calculate the growth of the same set of trees over 37 weeks (from spring to winter). Differences in week 0 and week 37 scans showed an approximate mean growth of 0.22 m, with a standard deviation of around 0.16 m reflecting heterogeneous tree growth.


Assuntos
Algoritmos , Árvores , Lasers , Luz
2.
Risk Anal ; 40(7): 1418-1437, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32347573

RESUMO

It is widely accepted that the relationship between lightning wildfire occurrence and its influencing factors vary depending on the spatial scale of analysis, making the development of models at the regional scale advisable. In this study, we analyze the effects of different biophysical variables and lightning characteristics on lightning-caused forest wildfires in Castilla y León region (Central Spain). The presence/absence of at least one lightning-caused fire in any 4 × 4-km grid cell was used as a dependent variable and vegetation type and structure, terrain, climate, and lightning characteristics were used as possible covariates. Five prediction methods were compared: a generalized linear model (GLM), a random forest model (RFM), a generalized additive model (GAM), a GAM that includes a spatial trend function (GAMs) and a spatial autoregressive model (AUREG). A GAMs with just one covariate, apart from longitude and latitude for each observation included as a combined effect, was considered the most appropriate model in terms of both predictive ability and simplicity. According to our results, the probability of a forest being affected by a lightning-caused fire is positively and nonlinearly associated with the percentage of coniferous woodlands in the landscape, suggesting that occurrence is more closely associated with vegetation type than with topography, climate, or lightning characteristics. The selected GAMs is intended to inform the Regional Government of Castilla y León (the fire and fuel agency in the region) regarding identification of areas at greatest risk so it can design long-term forest fuel and fire management strategies.


Assuntos
Raio , Incêndios Florestais , Fenômenos Biofísicos , Clima , Ecossistema , Florestas , Geografia , Humanos , Modelos Lineares , Modelos Teóricos , Probabilidade , Análise de Regressão , Medição de Risco , Espanha , Análise Espaço-Temporal , Estatísticas não Paramétricas , Incêndios Florestais/estatística & dados numéricos
3.
Sensors (Basel) ; 10(3): 1553-72, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22294886

RESUMO

A study on the geometric stability and decentering present in sensor-lens systems of six identical compact digital cameras has been conducted. With regard to geometrical stability, the variation of internal geometry parameters (principal distance, principal point position and distortion parameters) was considered. With regard to lens decentering, the amount of radial and tangential displacement resulting from decentering distortion was related with the precision of the camera and with the offset of the principal point from the geometric center of the sensor. The study was conducted with data obtained after 372 calibration processes (62 per camera). The tests were performed for each camera in three situations: during continuous use of the cameras, after camera power off/on and after the full extension and retraction of the zoom-lens. Additionally, 360 new calibrations were performed in order to study the variation of the internal geometry when the camera is rotated. The aim of this study was to relate the level of stability and decentering in a camera with the precision and quality that can be obtained. An additional goal was to provide practical recommendations about photogrammetric use of such cameras.


Assuntos
Calibragem , Lentes , Fotogrametria/instrumentação , Modelos Teóricos , Fotogrametria/métodos
4.
Sensors (Basel) ; 9(6): 4178-94, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22408520

RESUMO

This paper presents an optical measuring system based on low cost, high resolution digital cameras. Once the cameras are synchronised, the portable and adjustable system can be used to observe living beings, bodies in motion, or deformations of very different sizes. Each of the cameras has been modelled individually and studied with regard to the photogrammetric potential of the system. We have investigated the photogrammetric precision obtained from the crossing of rays, the repeatability of results, and the accuracy of the coordinates obtained. Systematic and random errors are identified in validity assessment of the definition of the precision of the system from crossing of rays or from marking residuals in images. The results have clearly demonstrated the capability of a low-cost multiple-camera system to measure with sub-millimetre precision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA