Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Sci Health B ; 52(6): 367-375, 2017 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-28277074

RESUMO

The objective of the present study was to examine a biological model under greenhouse conditions for the bioremediation of atrazine contaminated soils. The model consisted in a combination of phytoremediation (using Phaseolus vulgaris L.) and rhizopheric bio-augmentation using native Trichoderma sp., and Rhizobium sp. microorganisms that showed no inhibitory growth at 10,000 mg L-1 of herbicide concentration. 33.3 mg of atrazine 50 g-1 of soil of initial concentration was used and an initial inoculation of 1 × 109 UFC mL-1 of Rhizobium sp. and 1 × 105 conidia mL-1 of Trichoderma sp. were set. Four treatments were arranged: Bean + Trichoderma sp. (B+T); Bean + Rhizobium sp. (BR); Bean + Rhizobium sp. + Trichoderma sp. (B+R+T) and Bean (B). 25.51 mg of atrazine 50 g-1 of soil (76.63%) was removed by the B+T treatment in 40 days (a = 0.050, Tukey). This last indicate that the proposed biological model and methodology developed is useful for atrazine contaminated bioremediation agricultural soils, which can contribute to reduce the effects of agrochemical abuse.


Assuntos
Atrazina/metabolismo , Biodegradação Ambiental , Consórcios Microbianos , Phaseolus/fisiologia , Poluentes do Solo/metabolismo , Agricultura , Atrazina/análise , Herbicidas/análise , Herbicidas/metabolismo , México , Modelos Biológicos , Phaseolus/efeitos dos fármacos , Rhizobium/efeitos dos fármacos , Rhizobium/metabolismo , Rizosfera , Microbiologia do Solo , Poluentes do Solo/análise , Trichoderma/efeitos dos fármacos , Trichoderma/metabolismo
2.
Biotechnol Bioeng ; 98(1): 167-76, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17252612

RESUMO

This article reports the submerged culture of the entomopathogenic nematode Steinernema carpocapsae and its symbiotic bacterium, Xenorhabdus nematophila, within an internal-loop airlift bioreactor. Two configurations of the inner cylinder were tested: a standard draft tube (SDT) and a static mixer (SM), as well as two production media: MP1 (500 mL/L whey, among other ingredients) and MP2 (82 mL/L agave-juice from Agave spp., among other ingredients). Three fermentations were carried out: F1 --> SDT-MP1, F2 --> SM-MP1 and F3 --> SM-MP2. The operating conditions were expressed on the basis of dimensionless Reynolds number (Re) and volumetric oxygen transfer coefficient (k(L)a), both of them determined on riser and downcomer sections within the bioreactor. The experiments began with fewer than 1,000 infective juvenile nematode stages (IJ) per mL and at t = 20 d, they achieved (nematodes/mL-%IJ) 222,000-87%, 62,200-23% and 114,600-80%, within F1, F2 and F3 experiments, respectively. Nonetheless, the achieved maximum nematode biomass concentrations (g/L) were F1 --> 408, F2 --> 557 and F3 --> 613, and occurred at t = 16, 10 and 12 d, respectively. The fermentation operating conditions involved 0.042 (-) < Re < 647 (-) and 2.8 x 10(-4) s(-1) < k(L)a < 0.0447 s(-1), as functions of 0.004 m/s < superficial gas velocity (within the riser) < 0.079 m/s, 0.001 m/s < mean downcomer velocity < 0.014 m/s, and culture broth rheological properties which evolved from nearly the Newtonian behaviour to the pseudoplastic one. The maximum IJ concentration was achieved within F1 experiment (193,406 IJ/mL). Also, fermentation conditions involving higher riser-Re and lower downcomer-Re as well as higher nutriment concentrations in culture medium, promote higher nematode biomass concentrations but lower %IJ, maybe as a result of better conditions for the nematode population development.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cocultura/instrumentação , Nematoides/crescimento & desenvolvimento , Nematoides/microbiologia , Xenorhabdus/fisiologia , Movimentos do Ar , Animais , Técnicas de Cultura de Células/métodos , Proliferação de Células , Técnicas de Cocultura/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Simbiose/fisiologia
3.
Mol Microbiol ; 47(2): 411-30, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12519192

RESUMO

External hyphae, which play a key role in nitrogen nutrition of trees, are considered as the absorbing structures of the ectomycorrhizal symbiosis. Here, we have cloned and characterized Hebeloma cylindrosporum AMT1, GLNA and GDHA genes, which encode a third ammonium transporter, a glutamine synthetase and an NADP-dependent glutamate dehydrogenase respectively. Amt1 can fully restore the pseudohyphal growth defect of a Saccharomyces cerevisiae mep2 mutant, and this is the first evidence that a heterologous member of the Mep/Amt family complements this dimorphic change defect. Dixon plots of the inhibition of methylamine uptake by ammonium indicate that Amt1 has a much higher affinity than the two previously characterized members (Amt2 and Amt3) of the Amt/Mep family in H. cylindrosporum. We also identified the intracellular nitrogen pool(s) responsible for the modulation of expression of AMT1, AMT2, AMT3, GDHA and GLNA. In response to exogenously supplied ammonium or glutamine, AMT1, AMT2 and GDHA were downregulated and, therefore, these genes are subjected to nitrogen repression in H. cylindrosporum. Exogenously supplied nitrate failed to induce a downregulation of the five mRNAs after transfer of mycelia from a N-starved condition. Our results demonstrate that glutamine is the main effector for AMT1 and AMT2 repression, whereas GDHA repression is controlled by intracellular ammonium, independently of the intracellular glutamine or glutamate concentration. Ammonium transport activity may be controlled by intracellular NH4+. AMT3 and GLNA are highly expressed but not highly regulated. A model for ammonium assimilation in H. cylindrosporum is presented.


Assuntos
Agaricales/enzimologia , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Compostos de Amônio Quaternário/metabolismo , Proteínas de Saccharomyces cerevisiae , Agaricales/genética , Agaricales/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glutamato Desidrogenase/química , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Glutamato Sintase/química , Glutamato Sintase/genética , Glutamato Sintase/metabolismo , Metilaminas/metabolismo , Dados de Sequência Molecular , NADP/metabolismo , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA