Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38463962

RESUMO

Age-related white matter (WM) microstructure maturation and decline occur throughout the human lifespan, complementing the process of gray matter development and degeneration. Here, we create normative lifespan reference curves for global and regional WM microstructure by harmonizing diffusion MRI (dMRI)-derived data from ten public datasets (N = 40,898 subjects; age: 3-95 years; 47.6% male). We tested three harmonization methods on regional diffusion tensor imaging (DTI) based fractional anisotropy (FA), a metric of WM microstructure, extracted using the ENIGMA-DTI pipeline. ComBat-GAM harmonization provided multi-study trajectories most consistent with known WM maturation peaks. Lifespan FA reference curves were validated with test-retest data and used to assess the effect of the ApoE4 risk factor for dementia in WM across the lifespan. We found significant associations between ApoE4 and FA in WM regions associated with neurodegenerative disease even in healthy individuals across the lifespan, with regional age-by-genotype interactions. Our lifespan reference curves and tools to harmonize new dMRI data to the curves are publicly available as eHarmonize (https://github.com/ahzhu/eharmonize).

2.
Schizophr Bull ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37844289

RESUMO

BACKGROUND AND HYPOTHESIS: Structural brain alterations are well-established features of schizophrenia but they do not effectively predict disease/disease risk. Similar to polygenic risk scores in genetics, we integrated multifactorial aspects of brain structure into a summary "Neuroscore" and examined its potential as a marker of disease. STUDY DESIGN: We extracted measures from T1-weighted scans and diffusion tensor imaging (DTI) models from three studies with schizophrenia and healthy individuals. We calculated individual-level summary scores (Neuroscores) for T1-weighted and DTI measures and a combined score (Multimodal Neuroscore-MM). We assessed each score's ability to differentiate schizophrenia cases from controls and its relationship to clinical symptomatology, intelligence quotient (IQ), and medication dosage. We assessed Neuroscore specificity by performing all analyses in a more inclusive psychosis sample and by using scores generated from MDD effect sizes. STUDY RESULTS: All Neuroscores significantly differentiated schizophrenia cases from controls (T1 d = 0.56, DTI d = 0.29, MM d = 0.64) to a greater degree than individual brain regions. Higher Neuroscores (ie, increased liability) were associated with lower IQ (T1 ß = -0.26, DTI ß = -0.15, MM ß = -0.30). Higher T1-weighted Neuroscores were associated with higher positive and negative symptom severity (Positive ß = 0.21, Negative ß = 0.16); Higher Multimodal Neuroscores were associated with higher positive symptom severity (ß = 0.30). SZ Neuroscores outperformed MDD Neuroscores in predicting IQ (T1: z = 3.5, q = 0.0007; MM: z = 1.8, q = 0.05). CONCLUSIONS: Neuroscores are a step toward leveraging widespread structural brain alterations in psychosis to identify robust neurobiological markers of disease. Future studies will assess ways to improve neuroscore calculation, including developing the optimal methods to calculate neuroscores and considering disorder overlap.

3.
medRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873296

RESUMO

Machine learning can be used to define subtypes of psychiatric conditions based on shared clinical and biological foundations, presenting a crucial step toward establishing biologically based subtypes of mental disorders. With the goal of identifying subtypes of disease progression in schizophrenia, here we analyzed cross-sectional brain structural magnetic resonance imaging (MRI) data from 4,291 individuals with schizophrenia (1,709 females, age=32.5 years±11.9) and 7,078 healthy controls (3,461 females, age=33.0 years±12.7) pooled across 41 international cohorts from the ENIGMA Schizophrenia Working Group, non-ENIGMA cohorts and public datasets. Using a machine learning approach known as Subtype and Stage Inference (SuStaIn), we implemented a brain imaging-driven classification that identifies two distinct neurostructural subgroups by mapping the spatial and temporal trajectory of gray matter (GM) loss in schizophrenia. Subgroup 1 (n=2,622) was characterized by an early cortical-predominant loss (ECL) with enlarged striatum, whereas subgroup 2 (n=1,600) displayed an early subcortical-predominant loss (ESL) in the hippocampus, amygdala, thalamus, brain stem and striatum. These reconstructed trajectories suggest that the GM volume reduction originates in the Broca's area/adjacent fronto-insular cortex for ECL and in the hippocampus/adjacent medial temporal structures for ESL. With longer disease duration, the ECL subtype exhibited a gradual worsening of negative symptoms and depression/anxiety, and less of a decline in positive symptoms. We confirmed the reproducibility of these imaging-based subtypes across various sample sites, independent of macroeconomic and ethnic factors that differed across these geographic locations, which include Europe, North America and East Asia. These findings underscore the presence of distinct pathobiological foundations underlying schizophrenia. This new imaging-based taxonomy holds the potential to identify a more homogeneous sub-population of individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.

4.
Biol Psychiatry Glob Open Sci ; 3(3): 519-529, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519455

RESUMO

Background: Polygenic risk scores (PRSs) are indices of genetic liability for illness, but their clinical utility for predicting risk for a specific psychiatric disorder is limited. Genetic overlap among disorders and their effects on allied phenotypes may be a possible explanation, but this has been difficult to quantify given focus on singular disorders and/or allied phenotypes. Methods: We constructed PRSs for 5 psychiatric disorders (schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, attention-deficit/hyperactivity disorder) and 3 nonpsychiatric control traits (height, type II diabetes, irritable bowel disease) in the UK Biobank (N = 31,616) and quantified associations between PRSs and phenotypes allied with mental illness: behavioral (symptoms, cognition, trauma) and brain measures from magnetic resonance imaging. We then evaluated the extent of specificity among PRSs and their effects on these allied phenotypes. Results: Correlations among psychiatric PRSs replicated previous work, with overlap between schizophrenia and bipolar disorder, which was distinct from overlap between autism spectrum disorder and attention-deficit/hyperactivity disorder; overlap between psychiatric and control PRSs was minimal. There was, however, substantial overlap of PRS effects on allied phenotypes among psychiatric disorders and among psychiatric disorders and control traits, where the extent and pattern of overlap was phenotype specific. Conclusions: Results show that genetic distinctions between psychiatric disorders and between psychiatric disorders and control traits exist, but this does not extend to their effects on allied phenotypes. Although overlap can be informative, work is needed to construct PRSs that will function at the level of specificity needed for clinical application.

6.
Front Neurol ; 14: 1071766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970519

RESUMO

Introduction: The cocktail-party problem refers to the difficulty listeners face when trying to attend to relevant sounds that are mixed with irrelevant ones. Previous studies have shown that solving these problems relies on perceptual as well as cognitive processes. Previously, we showed that speech-reception thresholds (SRTs) on a cocktail-party listening task were influenced by genetic factors. Here, we estimated the degree to which these genetic factors overlapped with those influencing cognitive abilities. Methods: We measured SRTs and hearing thresholds (HTs) in 493 listeners, who ranged in age from 18 to 91 years old. The same individuals completed a cognitive test battery comprising 18 measures of various cognitive domains. Individuals belonged to large extended pedigrees, which allowed us to use variance component models to estimate the narrow-sense heritability of each trait, followed by phenotypic and genetic correlations between pairs of traits. Results: All traits were heritable. The phenotypic and genetic correlations between SRTs and HTs were modest, and only the phenotypic correlation was significant. By contrast, all genetic SRT-cognition correlations were strong and significantly different from 0. For some of these genetic correlations, the hypothesis of complete pleiotropy could not be rejected. Discussion: Overall, the results suggest that there was substantial genetic overlap between SRTs and a wide range of cognitive abilities, including abilities without a major auditory or verbal component. The findings highlight the important, yet sometimes overlooked, contribution of higher-order processes to solving the cocktail-party problem, raising an important caveat for future studies aiming to identify specific genetic factors that influence cocktail-party listening.

7.
Neurology ; 100(18): e1930-e1943, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36927883

RESUMO

BACKGROUND AND OBJECTIVES: Previous studies suggest that lower mitochondrial DNA (mtDNA) copy number (CN) is associated with neurodegenerative diseases. However, whether mtDNA CN in whole blood is related to endophenotypes of Alzheimer disease (AD) and AD-related dementia (AD/ADRD) needs further investigation. We assessed the association of mtDNA CN with cognitive function and MRI measures in community-based samples of middle-aged to older adults. METHODS: We included dementia-free participants from 9 diverse community-based cohorts with whole-genome sequencing in the Trans-Omics for Precision Medicine (TOPMed) program. Circulating mtDNA CN was estimated as twice the ratio of the average coverage of mtDNA to nuclear DNA. Brain MRI markers included total brain, hippocampal, and white matter hyperintensity volumes. General cognitive function was derived from distinct cognitive domains. We performed cohort-specific association analyses of mtDNA CN with AD/ADRD endophenotypes assessed within ±5 years (i.e., cross-sectional analyses) or 5-20 years after blood draw (i.e., prospective analyses) adjusting for potential confounders. We further explored associations stratified by sex and age (<60 vs ≥60 years). Fixed-effects or sample size-weighted meta-analyses were performed to combine results. Finally, we performed mendelian randomization (MR) analyses to assess causality. RESULTS: We included up to 19,152 participants (mean age 59 years, 57% women). Higher mtDNA CN was cross-sectionally associated with better general cognitive function (ß = 0.04; 95% CI 0.02-0.06) independent of age, sex, batch effects, race/ethnicity, time between blood draw and cognitive evaluation, cohort-specific variables, and education. Additional adjustment for blood cell counts or cardiometabolic traits led to slightly attenuated results. We observed similar significant associations with cognition in prospective analyses, although of reduced magnitude. We found no significant associations between mtDNA CN and brain MRI measures in meta-analyses. MR analyses did not reveal a causal relation between mtDNA CN in blood and cognition. DISCUSSION: Higher mtDNA CN in blood is associated with better current and future general cognitive function in large and diverse communities across the United States. Although MR analyses did not support a causal role, additional research is needed to assess causality. Circulating mtDNA CN could serve nevertheless as a biomarker of current and future cognitive function in the community.


Assuntos
Doença de Alzheimer , DNA Mitocondrial , Pessoa de Meia-Idade , Humanos , Feminino , Idoso , Masculino , DNA Mitocondrial/genética , Variações do Número de Cópias de DNA , Estudos Prospectivos , Estudos Transversais , Imageamento por Ressonância Magnética , Cognição , Encéfalo
8.
iScience ; 25(9): 104997, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36111257

RESUMO

Communicating in everyday situations requires solving the cocktail-party problem, or segregating the acoustic mixture into its constituent sounds and attending to those of most interest. Humans show dramatic variation in this ability, leading some to experience real-world problems irrespective of whether they meet criteria for clinical hearing loss. Here, we estimated the genetic contribution to cocktail-party listening by measuring speech-reception thresholds (SRTs) in 425 people from large families and ranging in age from 18 to 91 years. Roughly half the variance of SRTs was explained by genes (h 2 = 0.567). The genetic correlation between SRTs and hearing thresholds (HTs) was medium (ρ G = 0.392), suggesting that the genetic factors influencing cocktail-party listening were partially distinct from those influencing sound sensitivity. Aging and socioeconomic status also strongly influenced SRTs. These findings may represent a first step toward identifying genes for "hidden hearing loss," or hearing problems in people with normal HTs.

10.
Mol Psychiatry ; 27(9): 3731-3737, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35739320

RESUMO

Schizophrenia is frequently associated with obesity, which is linked with neurostructural alterations. Yet, we do not understand how the brain correlates of obesity map onto the brain changes in schizophrenia. We obtained MRI-derived brain cortical and subcortical measures and body mass index (BMI) from 1260 individuals with schizophrenia and 1761 controls from 12 independent research sites within the ENIGMA-Schizophrenia Working Group. We jointly modeled the statistical effects of schizophrenia and BMI using mixed effects. BMI was additively associated with structure of many of the same brain regions as schizophrenia, but the cortical and subcortical alterations in schizophrenia were more widespread and pronounced. Both BMI and schizophrenia were primarily associated with changes in cortical thickness, with fewer correlates in surface area. While, BMI was negatively associated with cortical thickness, the significant associations between BMI and surface area or subcortical volumes were positive. Lastly, the brain correlates of obesity were replicated among large studies and closely resembled neurostructural changes in major depressive disorders. We confirmed widespread associations between BMI and brain structure in individuals with schizophrenia. People with both obesity and schizophrenia showed more pronounced brain alterations than people with only one of these conditions. Obesity appears to be a relevant factor which could account for heterogeneity of brain imaging findings and for differences in brain imaging outcomes among people with schizophrenia.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Humanos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Obesidade
11.
Psychol Med ; 52(13): 2692-2701, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33622437

RESUMO

BACKGROUND: Antisaccade tasks can be used to index cognitive control processes, e.g. attention, behavioral inhibition, working memory, and goal maintenance in people with brain disorders. Though diagnoses of schizophrenia (SZ), schizoaffective (SAD), and bipolar I with psychosis (BDP) are typically considered to be distinct entities, previous work shows patterns of cognitive deficits differing in degree, rather than in kind, across these syndromes. METHODS: Large samples of individuals with psychotic disorders were recruited through the Bipolar-Schizophrenia Network on Intermediate Phenotypes 2 (B-SNIP2) study. Anti- and pro-saccade task performances were evaluated in 189 people with SZ, 185 people with SAD, 96 people with BDP, and 279 healthy comparison participants. Logistic functions were fitted to each group's antisaccade speed-performance tradeoff patterns. RESULTS: Psychosis groups had higher antisaccade error rates than the healthy group, with SZ and SAD participants committing 2 times as many errors, and BDP participants committing 1.5 times as many errors. Latencies on correctly performed antisaccade trials in SZ and SAD were longer than in healthy participants, although error trial latencies were preserved. Parameters of speed-performance tradeoff functions indicated that compared to the healthy group, SZ and SAD groups had optimal performance characterized by more errors, as well as less benefit from prolonged response latencies. Prosaccade metrics did not differ between groups. CONCLUSIONS: With basic prosaccade mechanisms intact, the higher speed-performance tradeoff cost for antisaccade performance in psychosis cases indicates a deficit that is specific to the higher-order cognitive aspects of saccade generation.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Transtorno Bipolar/psicologia , Transtornos Psicóticos/psicologia , Tempo de Reação/fisiologia , Fenótipo
12.
J Neurosci ; 41(33): 7015-7028, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34244364

RESUMO

Anatomical organization of the primate cortex varies as a function of total brain size, where possession of a larger brain is accompanied by disproportionate expansion of associative cortices alongside a relative contraction of sensorimotor systems. However, equivalent scaling maps are not yet available for regional white matter anatomy. Here, we use three large-scale neuroimaging datasets to examine how regional white matter volume (WMV) scales with interindividual variation in brain volume among typically developing humans (combined N = 2391: 1247 females, 1144 males). We show that WMV scaling is regionally heterogeneous: larger brains have relatively greater WMV in anterior and posterior regions of cortical white matter, as well as the genu and splenium of the corpus callosum, but relatively less WMV in most subcortical regions. Furthermore, regions of positive WMV scaling tend to connect previously-defined regions of positive gray matter scaling in the cortex, revealing a coordinated coupling of regional gray and white matter organization with naturally occurring variations in human brain size. However, we also show that two commonly studied measures of white matter microstructure, fractional anisotropy (FA) and magnetization transfer (MT), scale negatively with brain size, and do so in a manner that is spatially unlike WMV scaling. Collectively, these findings provide a more complete view of anatomic scaling in the human brain, and offer new contexts for the interpretation of regional white matter variation in health and disease.SIGNIFICANCE STATEMENT Recent work has shown that, in humans, regional cortical and subcortical anatomy show systematic changes as a function of brain size variation. Here, we show that regional white matter structures also show brain-size related changes in humans. Specifically, white matter regions connecting higher-order cortical systems are relatively expanded in larger human brains, while subcortical and cerebellar white matter tracts responsible for unimodal sensory or motor functions are relatively contracted. This regional scaling of white matter volume (WMV) is coordinated with regional scaling of cortical anatomy, but is distinct from scaling of white matter microstructure. These findings provide a more complete view of anatomic scaling of the human brain, with relevance for evolutionary, basic, and clinical neuroscience.


Assuntos
Imageamento por Ressonância Magnética/métodos , Substância Branca/anatomia & histologia , Adolescente , Adulto , Anisotropia , Variação Biológica Individual , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Criança , Estudos de Coortes , Corpo Caloso/anatomia & histologia , Imagem de Difusão por Ressonância Magnética , Feminino , Substância Cinzenta/anatomia & histologia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Dinâmica não Linear , Tamanho do Órgão , Reprodutibilidade dos Testes , Adulto Jovem
13.
Artigo em Inglês | MEDLINE | ID: mdl-33622655

RESUMO

BACKGROUND: Progress in precision psychiatry is predicated on identifying reliable individual-level diagnostic biomarkers. For psychosis, measures of structural and functional connectivity could be promising biomarkers given consistent reports of dysconnectivity across psychotic disorders using magnetic resonance imaging. METHODS: We leveraged data from four independent cohorts of patients with psychosis and control subjects with observations from approximately 800 individuals. We used group-level analyses and two supervised machine learning algorithms (support vector machines and ridge regression) to test within-, between-, and across-sample classification performance of white matter and resting-state connectivity metrics. RESULTS: Although we replicated group-level differences in brain connectivity, individual-level classification was suboptimal. Classification performance within samples was variable across folds (highest area under the curve [AUC] range = 0.30) and across datasets (average support vector machine AUC range = 0.50; average ridge regression AUC range = 0.18). Classification performance between samples was similarly variable or resulted in AUC values of approximately 0.65, indicating a lack of model generalizability. Furthermore, collapsing across samples (resting-state functional magnetic resonance imaging, N = 888; diffusion tensor imaging, N = 860) did not improve model performance (maximal AUC = 0.67). Ridge regression models generally outperformed support vector machine models, although classification performance was still suboptimal in terms of clinical relevance. Adjusting for demographic covariates did not greatly affect results. CONCLUSIONS: Connectivity measures were not suitable as diagnostic biomarkers for psychosis as assessed in this study. Our results do not negate that other approaches may be more successful, although it is clear that a systematic approach to individual-level classification with large independent validation samples is necessary to properly vet neuroimaging features as diagnostic biomarkers.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Biomarcadores , Encéfalo , Imagem de Tensor de Difusão/métodos , Humanos , Imageamento por Ressonância Magnética/métodos
14.
Hum Brain Mapp ; 42(6): 1727-1741, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33340172

RESUMO

Although previous studies have highlighted associations of cannabis use with cognition and brain morphometry, critical questions remain with regard to the association between cannabis use and brain structural and functional connectivity. In a cross-sectional community sample of 205 African Americans (age 18-70) we tested for associations of cannabis use disorder (CUD, n = 57) with multi-domain cognitive measures and structural, diffusion, and resting state brain-imaging phenotypes. Post hoc model evidence was computed with Bayes factors (BF) and posterior probabilities of association (PPA) to account for multiple testing. General cognitive functioning, verbal intelligence, verbal memory, working memory, and motor speed were lower in the CUD group compared with non-users (p < .011; 1.9 < BF < 3,217). CUD was associated with altered functional connectivity in a network comprising the motor-hand region in the superior parietal gyri and the anterior insula (p < .04). These differences were not explained by alcohol, other drug use, or education. No associations with CUD were observed in cortical thickness, cortical surface area, subcortical or cerebellar volumes (0.12 < BF < 1.5), or graph-theoretical metrics of resting state connectivity (PPA < 0.01). In a large sample collected irrespective of cannabis used to minimize recruitment bias, we confirm the literature on poorer cognitive functioning in CUD, and an absence of volumetric brain differences between CUD and non-CUD. We did not find evidence for or against a disruption of structural connectivity, whereas we did find localized resting state functional dysconnectivity in CUD. There was sufficient proof, however, that organization of functional connectivity as determined via graph metrics does not differ between CUD and non-user group.


Assuntos
Córtex Cerebral , Disfunção Cognitiva , Abuso de Maconha , Rede Nervosa , Adulto , Negro ou Afro-Americano , Idoso , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Conectoma , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Abuso de Maconha/complicações , Abuso de Maconha/diagnóstico por imagem , Abuso de Maconha/patologia , Abuso de Maconha/fisiopatologia , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Adulto Jovem
15.
Cereb Cortex ; 30(10): 5460-5470, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32488253

RESUMO

Brain structural networks have been shown to consistently organize in functionally meaningful architectures covering the entire brain. However, to what extent brain structural architectures match the intrinsic functional networks in different functional domains remains under explored. In this study, based on independent component analysis, we revealed 45 pairs of structural-functional (S-F) component maps, distributing across nine functional domains, in both a discovery cohort (n = 6005) and a replication cohort (UK Biobank, n = 9214), providing a well-match multimodal spatial map template for public use. Further network module analysis suggested that unimodal cortical areas (e.g., somatomotor and visual networks) indicate higher S-F coherence, while heteromodal association cortices, especially the frontoparietal network (FPN), exhibit more S-F divergence. Collectively, these results suggest that the expanding and maturing brain association cortex demonstrates a higher degree of changes compared with unimodal cortex, which may lead to higher interindividual variability and lower S-F coherence.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Adulto , Idoso , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia
16.
Cereb Cortex ; 30(9): 4899-4913, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32318716

RESUMO

Identifying genetic factors underlying neuroanatomical variation has been difficult. Traditional methods have used brain regions from predetermined parcellation schemes as phenotypes for genetic analyses, although these parcellations often do not reflect brain function and/or do not account for covariance between regions. We proposed that network-based phenotypes derived via source-based morphometry (SBM) may provide additional insight into the genetic architecture of neuroanatomy given its data-driven approach and consideration of covariance between voxels. We found that anatomical SBM networks constructed on ~ 20 000 individuals from the UK Biobank were heritable and shared functionally meaningful genetic overlap with each other. We additionally identified 27 unique genetic loci that contributed to one or more SBM networks. Both GWA and genetic correlation results indicated complex patterns of pleiotropy and polygenicity similar to other complex traits. Lastly, we found genetic overlap between a network related to the default mode and schizophrenia, a disorder commonly associated with neuroanatomic alterations.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Estudos de Associação Genética , Rede Nervosa/fisiopatologia , Adulto , Idoso , Transtorno Bipolar/genética , Transtorno Bipolar/fisiopatologia , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/fisiopatologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Análise de Componente Principal , Esquizofrenia/genética , Esquizofrenia/fisiopatologia
17.
Hum Brain Mapp ; 40(14): 4180-4191, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31187567

RESUMO

White matter microstructure is affected by immune system activity via the actions of circulating pro-inflammatory cytokines. Although white matter microstructure and inflammatory measures are significantly heritable, it is unclear if overlapping genetic factors influence these traits in humans. We conducted genetic correlation analyses of these traits using randomly ascertained extended pedigrees from the Genetics of Brain Structure and Function Study (N = 1862, 59% females, ages 18-97 years; 42 ± 15.7). White matter microstructure was assessed using fractional anisotropy (FA) calculated from diffusion tensor imaging (DTI). Circulating levels (pg/mL) of pro-inflammatory cytokines (IL-6, IL-8, and TNFα) phenotypically associated with white matter microstructure were quantified from blood serum. All traits were significantly heritable (h2 ranging from 0.41 to 0.66 for DTI measures and from 0.18 to 0.30 for inflammatory markers). Phenotypically, higher levels of circulating inflammatory markers were associated with lower FA values across the brain (r = -.03 to r = -.17). There were significant negative genetic correlations between most DTI measures and IL-8 and TNFα, although effects for TNFα were no longer significant when covarying for body mass index. Genetic correlations between DTI measures and IL-6 were not significant. Understanding the genetic correlation between specific inflammatory markers and DTI measures may help researchers focus questions related to inflammatory processes and brain structure.


Assuntos
Córtex Cerebral/anatomia & histologia , Citocinas/genética , Inflamação/genética , Padrões de Herança , Substância Branca/anatomia & histologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anisotropia , Citocinas/sangue , Imagem de Tensor de Difusão , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
18.
Hum Brain Mapp ; 40(1): 65-79, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184306

RESUMO

Combining statistical parametric maps (SPM) from individual subjects is the goal in some types of group-level analyses of functional magnetic resonance imaging data. Brain maps are usually combined using a simple average across subjects, making them susceptible to subjects with outlying values. Furthermore, t tests are prone to false positives and false negatives when outlying values are observed. We propose a regularized unsupervised aggregation method for SPMs to find an optimal weight for aggregation, which aids in detecting and mitigating the effect of outlying subjects. We also present a bootstrap-based weighted t test using the optimal weights to construct an activation map robust to outlying subjects. We validate the performance of the proposed aggregation method and test using simulated and real data examples. Results show that the regularized aggregation approach can effectively detect outlying subjects, lower their weights, and produce robust SPMs.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Interpretação Estatística de Dados , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina não Supervisionado , Mapeamento Encefálico/normas , Humanos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética
19.
Neuroreport ; 29(17): 1473-1478, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30252749

RESUMO

Aniridia is a panocular disorder characterized chiefly by iris hypoplasia. Most cases result from mutations of the PAX6 gene, which is important in both eye and brain development. In addition to ocular alterations, differences in global brain volume and functional connectivity have been reported in humans with aniridia. Understanding neural alterations in aniridia may require examination of possible differences in white matter structure, as few studies have assessed white matter in this population. The current study utilized diffusion-weighted imaging to assess white matter structure in 11 people with aniridia and 11 healthy comparison participants, matched for sex and age. A map of the local connectome was calculated to compare quantitative anisotropy (QA), an index of white matter tract density, in all white matter voxels, revealing subcomponents of white matter tracts with differing QA between people with aniridia and healthy comparisons. The analysis indicated that QA was lower for people with aniridia in portions of bilateral optic tract [t(20)=-4.23, P=0.001, d=-1.80], bilateral optic radiation [t(20)=-4.06, P=0.001, d=-1.73], forceps major [t(20)=-3.65, P=0.002, d=-1.55], bilateral superior longitudinal fasciculus [left: t(20)=-3.15, P=0.005, d=-1.34; right, t(20)=-4.28, P<0.001, d=-1.83], and right posterior corona radiata [t(20)=-3.19, P=0.006, d=-1.36]. These differences demonstrate that white matter structure is altered in people with aniridia in both visual tracts and associated posterior visual pathways.


Assuntos
Aniridia/patologia , Córtex Visual/patologia , Vias Visuais/patologia , Substância Branca/patologia , Adulto , Aniridia/diagnóstico por imagem , Conectoma , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Córtex Visual/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
20.
Artigo em Inglês | MEDLINE | ID: mdl-29759822

RESUMO

BACKGROUND: Cognitive and structural brain abnormalities range from mild to severe in psychosis. The relationships of specific cognitive functions to specific brain structures across the psychosis spectrum is less certain. METHODS: Participants (n = 678) with bipolar, schizoaffective, or schizophrenia psychoses and healthy control subjects were recruited via the Bipolar-Schizophrenia Network for Intermediate Phenotypes. The Schizo-Bipolar Scale was used to create a psychosis continuum (from purely affective to purely nonaffective). Canonical correlation between 14 cognitive measures and structural brain measures (gray matter volume, cortical thickness, cortical surface area, and local gyrification indices) for 68 neocortical regions yielded constructs that defined shared cognition-brain structure relationships. Canonical discriminant analysis was used to integrate these constructs and efficiently summarize cognition-brain structure relationships across the psychosis continuum. RESULTS: General cognition was associated with larger gray matter volumes and thicker cortices but smaller cortical surface area in frontoparietal regions. Working memory was associated with larger volume and surface area in frontotemporal regions. Faster response speed was associated with thicker frontal cortices. Constructs that captured general cognitive ability and working memory and their relationship to cortical volumes primarily defined an ordered psychosis spectrum (purely affective, least abnormal through purely nonaffective, and most abnormal). A construct that captured general cognitive ability and its relationship to cortical surface area differentiated purely affective cases from other groups. CONCLUSIONS: General cognition and working memory with cortical volume deviations characterized more nonaffective psychoses. Alternatively, affective psychosis cases with general cognitive deficits had deviations in cortical surface area, perhaps accounting for heterogeneous findings across previous studies.


Assuntos
Transtorno Bipolar/patologia , Transtornos Cognitivos/patologia , Cognição/fisiologia , Esquizofrenia/patologia , Transtorno Bipolar/complicações , Transtornos Cognitivos/complicações , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Memória de Curto Prazo/fisiologia , Testes Neuropsicológicos , Esquizofrenia/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA