Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 228: 113417, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356139

RESUMO

Multifunctional surfaces may display the potential to accelerate and promote the healing process around dental implants. However, the initial cellular biocompatibility, molecular activity, and the release of functionalized molecules from these novel surfaces require extensive investigation for clinical use. Aiming to develop and compare innovative surfaces for application in dental implants, the present study utilized titanium disks, which were treated and divided into four groups: machined (Macro); acid-etched (Micro); anodized-hydrophilic surface (TNTs); and anodized surface coated with a rifampicin-loaded polymeric layer (poly(lactide-co-glycolide), PLGA) (TNTsRIMP). The samples were characterized regarding their physicochemical properties and the cumulative release of rifampicin (RIMP), investigated at different pH values. Additionally, differentiated osteoblasts from mesenchymal cells were used for cell viability and qRT-PCR analysis. Antibacterial properties of each surface treatment were investigated against Staphylococcus epidermidis. TNTsRIMP demonstrated controlled drug release for up to 7 days in neutral pH environments. Osteogenic cell cultures indicated that all the evaluated surfaces showed biocompatibility. The TNTs group revealed up-regulated values for bone-related gene quantification in 7 days, followed by the TNTsRIMP group. Furthermore, the antibiotic-functionalized surface revealed effectiveness to inhibit S. epidermidis and stimulate promising conditions for osteogenic cell behavior. Characteristics such as nanomorphology and hydrophilicity were determinants for the up-regulated quantification of osteogenic biomarkers related to early bone maturation, encouraging application in intra-osseous implant surfaces; in addition, antibiotic-functionalized surfaces demonstrated significant higher antibacterial properties compared to the other groups. Our findings suggest that polymeric-antibiotic-loaded coating might be applied for the prevention of early infections, favoring its application in multifunctional surfaces for intra- and/or trans-mucosal components of dental implants, while, hydrophilic nanotextured surfaces promoted optimistic properties to stimulate early bone-related cell responses, favoring its application in bone-anchored surfaces.


Assuntos
Antibacterianos , Implantes Dentários , Antibacterianos/farmacologia , Rifampina/farmacologia , Propriedades de Superfície , Diferenciação Celular , Titânio/farmacologia , Titânio/química , Osseointegração
2.
Front Med (Lausanne) ; 8: 624166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681253

RESUMO

Background: Pregnant women are susceptible to the novel coronavirus (SARS-CoV-2), and the consequences for the fetus are still uncertain. Here, we present a case of a pregnant woman with subclinical hypothyroidism and a plasminogen activator inhibitor type 1 (PAI-1) 4G/5G polymorphism who was infected with SARS-CoV-2 at the end of the third trimester of pregnancy, with unexpected evolution of death of the newborn 4 days postpartum. Methods: Nested PCR was performed to detect the virus, followed by ssDNA sequencing. Results: Transplacental transmission of SARS-CoV-2 can cause placental inflammation, ischemia, and neonatal viremia, with complications such as preterm labor and damage to the placental barrier in patients with PAI-1 4G/5G polymorphism. Conclusion: We showed a newborn with several damages potentially caused due to the PAI-1 polymorphisms carried by the mother infected with SARS-CoV-2 during pregnancy.

3.
Inform Med Unlocked ; 23: 100539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33623816

RESUMO

In 2020 SARS-CoV-2 reached pandemic status, reaching Brazil in mid-February. As of now, no specific drugs for treating the disease are available. In this work, the possibility of interaction between SARS-CoV-2 viral proteins (open and closed spike protein, isolate spike protein RBD, NSP 10, NSP 16, main protease, and RdRp polymerase) and multiple molecules is addressed through the repositioning of drugs available for the treatment of other diseases that are approved by the FDA and covered by SUS, the Brazilian Public Health System. Three different docking software were used, followed by a unification of the results by independent evaluation. Afterwards, the chemical interactions of the compounds with the targets were inspected via molecular dynamics and analyzed. The results point to a potential effectiveness of Penciclovir, Ribavirin, and Zanamivir, from a set of 48 potential candidates. They may also be multi-target drugs, showing high affinity with more than one viral protein. Further in vitro and in vivo validation is required to assess the suitability of repositioning the proposed drugs for COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA