Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37880833

RESUMO

Heart disease is the leading cause of death in humans and evidence suggests early life growth-restriction increases heart disease risk in adulthood. Therefore, this study sought to investigate the effects of low birth weight (LBW) and postnatal restricted nutrition (RN) on cardiac function in neonatal pigs. We hypothesized that LBW and RN would reduce cardiac function in pigs but this effect would be reversed with refeeding. To investigate this hypothesis, pigs born weighing <1.5 kg were assigned LBW, and pigs born >1.5 kg were assigned normal birth weight (NBW). Half the LBW and NBW pigs underwent ~25% total nutrient restriction via intermittent suckling (assigned RN) for the first 4 wk post-farrowing. The other half of piglets were allowed unrestricted suckling access to the sow (assigned NN). At 28 d of age (weaning), pigs were weaned and provided ad libitum access to a standard diet. Echocardiographic, vascular ultrasound, and blood pressure (BP) measurements were performed on day 28 and again on day 56 to assess cardiovascular structure and function. A full factorial three-way ANOVA (NN vs. RN, LBW vs. NBW, male vs. female) was performed. Key findings include reduced diastolic BP (P = 0.0401) and passive ventricular filling (P = 0.0062) in RN pigs at 28 d but this was reversed after refeeding. LBW piglets have reduced cardiac output index (P = 0.0037) and diastolic and systolic wall thickness (P = 0.0293 and P = 0.0472) at 56 d. Therefore, cardiac dysfunction from RN is recovered with adequate refeeding while LBW programs irreversible cardiac dysfunction despite proper refeeding in neonatal pigs.


Heart disease is the leading cause of death in humans, and in addition to the known modifiable risk factors, evidence suggests early life undernutrition increases heart disease risk in adulthood. Specifically, low birth weight (LBW) has been linked to poor infant cardiac development which could be made worse by an inadequate postnatal diet. Globally, 160 million children under the age of five experience a poor nutritive environment leading to growth-restriction highlighting the need for continued research. Using a pig model, the present investigation examined the effects of LBW and a restricted diet during postnatal life on cardiac structure and function in preweaning and post-weaning piglets. The most important findings were (1) nutrient-restricted piglets had reduced cardiac function at 28 d old but refeeding reversed cardiac dysfunction at 56 d, indicating that nutrient-induced cardiac dysfunction can be reversed, and (2) LBW pigs presented with cardiac dysfunction at 56 d regardless of feeding level, suggesting potential for an increased risk of heart disease in adulthood with LBW.


Assuntos
Cardiopatias , Doenças dos Suínos , Suínos , Animais , Feminino , Masculino , Humanos , Recém-Nascido , Peso ao Nascer/fisiologia , Recém-Nascido de Baixo Peso/fisiologia , Cardiopatias/veterinária
2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37658823

RESUMO

Low protein diets supplemented with essential amino acids (EAA) fed to pigs reduce the excess supply of EAA and nitrogen (N). However, low protein diets may become limiting in non-essential amino acids (NEAA) and N, thus affecting the utilization of EAA for N retention. It has been suggested that the EAA-N:total N (E:T) ratio can give an indication of dietary N sufficiency. An N-balance study was conducted to determine the effect of E:T ratio on the Lys requirement for maximum N retention. A total of 80 growing barrows (19.3 ±â€…0.21 kg initial body weight) were randomly assigned to 1 of 10 diets (n = 8) in 8 blocks in a 2 × 5 factorial arrangement. Diets consisted of a low ratio (LR; E:T of 0.33) or a high ratio (HR; E:T of 0.36) with graded Lys content (0.82%, 0.92%, 1.02%, 1.12%, and 1.22% standardized ileal digestible [SID]). After a 7-d adaptation, a 4-d N-balance collection was conducted. Blood samples were obtained on d 2 of the collection period 2 h after the morning meal for plasma urea N (PUN) analysis. Data were analyzed using the MIXED model procedure with fixed effects of ratio (n = 2), Lys (n = 5), and their interactions. The experimental block (room) was included as a random effect (n = 8). The SID Lys requirement was estimated using PROC NLIN linear broken-line breakpoint model. There was a significant interaction between E:T ratio and Lys (P < 0.01), where LR diets had a higher N retention than HR diets, while increasing Lys linearly increased N retention (P = 0.01) in both HR and LR diets. The marginal efficiency of utilizing SID Lys (P < 0.01) reduced with increasing Lys content, while the efficiency of utilizing N (P < 0.05) increased as Lys increased. The SID Lys required to maximize N retention of pigs fed HR diets was estimated at 1.08% (R2 = 0.61) and LR diets at 1.21% (R2 = 0.80). The current results indicate that N may be limiting in diets with a high E:T ratio, limiting N retention. Supplying additional dietary N, as intact protein, can increase N retention, resulting in a greater Lys requirement.


Low protein diets supplemented with essential amino acids (EAA) can improve growth performance, but dietary non-essential amino acids (NEAA) and nitrogen (N) content may be limiting factors. This limitation may ultimately affect the efficient utilization of EAA for optimal N retention and growth performance. As a benchmark, appropriate quantities of EAA and total N (TN) must be provided, using the EAA-N to TN ratio (E:T) to indicate that both are supplied in sufficient amounts. The present study generally observed a linear increase in N retention with increasing dietary Lys, and N retention was greater in the low E:T as compared with high E:T diets. A greater Lys requirement was observed in the low E:T compared with the high E:T-fed pigs. A low E:T ratio with Lys above current recommendations is warranted to maximize N retention.


Assuntos
Aminoácidos Essenciais , Lisina , Animais , Suínos , Aminoácidos , Suplementos Nutricionais , Nitrogênio
3.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36402552

RESUMO

The objective of this study was to characterize developmental differences in low birth weight (LBW) and normal birth weight (NBW) piglets with or without pre-weaning nutrient restriction using serum metabolomic profile analysis. At farrowing, 112 piglets were identified as LBW (1.22 ± 0.28 kg) or NBW (1.70 ± 0.27 kg) and were randomly assigned to receive normal nutrition (NN) or restricted nutrition (RN) (6 h/day no suckling) from days 2 to 28 post farrow (n = 8 pigs/group). On day 28, piglets were weaned onto a common diet. Fasted blood samples were obtained on days 28 and 56 (n = 8 pigs/group) and were analyzed using quantitative metabolomics via a combination of direct injection mass spectrometry with a reverse-phase LC-MS/MS custom assay. Data were normalized using logarithmic transformation and auto-scaling. Partial least squares discriminant analysis (PLS-DA) was carried out to further explore the differential metabolites among the groups (metaboanalyst.ca) with an integrated enrichment and pathway topography analysis. On day 28, LBW piglets had lower levels of essential amino acids as well as reduced metabolites associated with fatty acid oxidation, glycolysis, and the tri-carboxylic acid (TCA) cycle compared to the NBW group. The overall reduction of metabolites associated with energy production and regulation suggests that LBW vs. NBW are in an energy-survival state. On day 56, LBW pigs had increased utilization of fatty acids and resultant ketone production, evident by increased carnitines, acetoacetate, ß-hydroxybutyrate, and glycerol compared to NBW pigs. In addition, compared to the NBW pigs LBW pigs had a consistent decrease in serum glucose and lactate as well as reduced TCA cycle metabolites: pyruvate, succinate, citrate, and α-ketoglutaric acid similar to day 28. Low reliance on glycolysis and the TCA cycle and higher glycerol production in the LBW pigs may indicate impairments in glucose tolerance at 56 d. In summary, LBW piglets appear to have more metabolic alterations in early life, which is not resolved with adequate nutrition or refeeding and may elucidate physiological and metabolic mechanisms of poor growth and life performance compared to NBW pigs later in life.


The objective of this study was to characterize developmental differences in low birth weight (LBW) and normal birth weight (NBW) piglets with or without pre-weaning nutrient restriction using serum metabolomic profile analysis. Through the serum metabolite analysis, at weaning, we saw fewer metabolites associated with fatty acid oxidation, and glycolysis in the LBW pigs compared to the NBW, which suggests poor fatty acid and glucose metabolism in these piglets. After weaning, fatty acid metabolism is restored in both LBW and NBW piglets, but glucose and lactate levels remained lower in the LBW piglets, which may be indicative of impairment in glucose tolerance post-weaning. Therefore, in LBW piglets, poor metabolism of glucose at weaning could not be curtailed with nutrition intervention post-weaning.


Assuntos
Glicerol , Espectrometria de Massas em Tandem , Suínos , Animais , Peso ao Nascer/fisiologia , Cromatografia Líquida/veterinária , Espectrometria de Massas em Tandem/veterinária , Glucose
4.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 581-588, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35934921

RESUMO

This study aimed to assess the effects of different spray-dried plasma (SDP) feeding programmes to pigs on performance, intestinal histomorphology and faecal bacterial shedding after an Escherichia coli K88 challenge. A total of 96 piglets (5.77 ± 0.01 kg) were weaned at 21 days of age (Day 0) and challenged with 3 ml of 1 × 1010 CFU of E. coli K88 in total 3.0 × 1010 CFU/animal on Days 0, 2 and 4. Pigs were fed nursery diets containing 0.0%, 3.0%, 6.0% or 9.0% SDP from weaning to 35 days of age; 0.0%, 1.5%, 3.0% or 4.5% SDP from 36 to 49 days; and the same control diet (without SDP), for the last 10 days of the experiment (50-59 days of age). Performance was measured from 35 to 59 days of age and faecal bacterial shedding and intestinal histomorphometry were evaluated at Days 28 and 49 of age respectively. From 21 to 35 days of age, there was a linear effect for body weight (BW) and average daily gain (ADG), a trend of linear effect for average daily feed intake (ADFI) and a quadratic effect for feed:gain ratio (FG). From 21 to 49 days, the 9.0:4.5% and 6.0:3.0% SDP feeding programmes improved BW, ADG and FG when compared to the other treatments. At 59 days of age, BW and ADG were increased by the two highest SDP feeding programmes. The 9.0:4.5% SDP feeding programme increased ADFI from 21 to 59 days of age, with 6.0:3.0% being intermediate and the other two treatments being lowest. The CFU counts of E. coli/g of faeces decreased linearly with increasing addition of SDP. These results indicate that an extended inclusion of increased SDP levels in post-weaning diets can improve growth potential and decrease bacterial shedding induced by E. coli K88.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Animais , Suínos , Derrame de Bactérias , Dieta , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Desmame , Fezes/microbiologia , Ração Animal/análise , Doenças dos Suínos/microbiologia
5.
Animals (Basel) ; 12(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290260

RESUMO

Our understanding of nutrition has been evolving to support both performance and immune status of pigs, particularly in disease-challenged animals which experience repartitioning of nutrients from growth towards the immune response. In this sense, it is critical to understand how stress may impact nutrient metabolism and the effects of nutritional interventions able to modulate organ (e.g., gastrointestinal tract) functionality and health. This will be pivotal in the development of effective diet formulation strategies in the context of improved animal performance and health. Therefore, this review will address qualitative and quantitative effects of immune system stimulation on voluntary feed intake and growth performance measurements in pigs. Due to the known repartitioning of nutrients, the effects of stimulating the immune system on nutrient requirements, stratified according to different challenge models, will be explored. Finally, different nutritional strategies (i.e., low protein, amino acid-supplemented diets; functional amino acid supplementation; dietary fiber level and source; diet complexity; organic acids; plant secondary metabolites) will be presented and discussed in the context of their possible role in enhancing the immune response and animal performance.

6.
J Anim Sci ; 100(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35976068

RESUMO

Functional amino acids (FAA) attenuate the effects of Salmonella challenge in pigs. However, this may be affected by protein source (PS). The objective of the present study was to determine the effects of nursery dietary PS and FAA supplementation on growth performance and immune status of pigs subsequently challenged with Salmonella Typhimurium (ST). Thirty-two weanling pigs (8.7 ± 0.23 kg) were assigned to a feeding program for 31 d in a 2 × 2 factorial arrangement. Factors were dietary PS (plant-based [PB] vs. animal-based [AB]) and FAA profile (basal [FAA-] or supplemented [FAA+; Thr, Met, and Trp at 120% of requirements]). Pigs were subsequently placed on a common grower diet and, after a 7-d adaptation, were inoculated with ST and monitored for 7 d postinoculation. Growth performance, rectal temperature, fecal score, gut health, ST shedding score, intestinal colonization and translocation, and blood parameters of acute-phase response and antioxidant balance were measured pre- and postinoculation. Data were analyzed with a 2 (AB vs. PB) × 2 (FAA- vs. FAA+) factorial arrangement of treatments and differences between means were considered significant at P ≤ 0.05. Postinoculation fecal score was worse, ST shedding, cecal myeloperoxidase, and cecal and colonic ST colonization were greater in PB compared to AB pigs (P < 0.05). Translocation of ST to spleen was decreased by FAA+ (P < 0.05), regardless of dietary PS. Postinoculation, AB pigs had greater average daily gain compared to PB-FAA- (P < 0.05). Pigs fed AB-FAA- showed increased average daily feed intake compared to PB-FAA- pigs (P < 0.05) and feed efficiency was increased in AB-FAA+ compared to PB-FAA- pigs (P < 0.05). Feeding PB ingredients in nursery diets seems to increase susceptibility of pigs to Salmonella. Moreover, FAA supplementation partially attenuated the negative effects of PB diets on the response of pigs to ST challenge.


While long-term growth performance of weaned pigs is not negatively affected by feeding nursery diets containing only plant-based protein sources, these pigs may be more susceptible to subsequent disease challenges. It has been previously shown that supplementation with key functional amino acids improves growth performance and the immune status of pigs during intestinal pathogen challenge. A study was performed to determine the effect of feeding nursery diets containing only plant-based protein sources or including animal-based protein sources with or without supplementation with a blend of functional amino acids (methionine, threonine, and tryptophan) on growth and immune status during a subsequent Salmonella challenge. Pigs fed diets containing animal-based protein sources had improved growth performance and immune status compared to pigs fed plant-based diets, regardless of the inclusion of functional amino acids. Pigs fed plant-based diets were more susceptible to the disease challenge, however, this was partially mitigated by the inclusion of functional amino acids. The inclusion of animal-based protein sources may be necessary to optimize pig health and performance, however, functional amino acid inclusion may be beneficial when plant-based diets are fed.


Assuntos
Ração Animal , Salmonella typhimurium , Suínos , Animais , Ração Animal/análise , Peroxidase , Antioxidantes , Dieta/veterinária , Suplementos Nutricionais , Proteínas Alimentares , Aminoácidos/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-35151870

RESUMO

Full-term low birthweight (LBW) offspring exhibit peripheral vascular dysfunction in the postnatal period; however, whether such impairments extend to the cerebrovasculature remains to be elucidated. We used a swine model to test the hypothesis that LBW offspring would exhibit cerebrovascular dysfunction at later stages of life. Offspring from 14 sows were identified as normal birthweight (NBW) or LBW and were assessed at 28 (similar to end of infancy) and 56 (similar to childhood) days of age. LBW swine had lower absolute brain mass, but demonstrated evidence of brain sparing (increased brain mass scaled to body mass) at 56 days of age. The cerebral pulsatility index, based on transcranial Doppler, was increased in LBW swine. Moreover, arterial myography of isolated cerebral arteries revealed impaired vasoreactivity to bradykinin and reduced contribution of nitric oxide (NO) to vasorelaxation in the LBW swine. Immunoblotting demonstrated a lower ratio of phosphorylated-to-total endothelial NO synthase in LBW offspring. This impairment in NO signaling was greater at 28 vs. 56 days of age. Vasomotor responses to sodium nitroprusside (NO-donor) were unaltered, while Leu31, Pro34 neuropeptide Y-induced vasoconstriction was enhanced in LBW swine. Increases in total Y1 receptor protein content in the LBW group were not significant. In summary, LBW offspring displayed signs of cerebrovascular dysfunction at 28 and 56 days of age, evidenced by altered cerebral hemodynamics (reflective of increased impedance) coupled with endothelial dysfunction and altered vasomotor control. Overall, the data reveal that normal variance in birthweight of full-term offspring can influence cerebrovascular function later in life.


Assuntos
Artérias , Vasodilatação , Animais , Peso ao Nascer , Encéfalo , Feminino , Nitroprussiato , Suínos
8.
J Anim Sci ; 100(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34962518

RESUMO

We recently showed that functional amino acid (FAA) supplementation improves growth performance and immune status of Salmonella Typhimurium (ST)-challenged pigs, which was further improved by a longer adaptation period. It is expected that the effects are associated with increased activity of intestinal alkaline phosphatase (IAP). The objective of this study was to evaluate the effects of FAA supplementation and adaptation period on the ileal, cecal, and colonic activity of IAP in weaned pigs challenged with ST. In experiment 1, a total of 32 mixed-sex weanling pigs were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement with low (LP) or high protein (HP) content and basal (FAA-) or FAA profile (FAA+; Thr, Met, and Trp at 120% of requirements) as factors. In experiment 2, a total of 32 mixed-sex weanling pigs were randomly assigned to one of four dietary treatments, being FAA- fed throughout the experimental period (FAA-) or an FAA profile fed only in the post-inoculation (FAA + 0), for 1 wk pre- and post-inoculation (FAA + 1), or throughout the experimental period (FAA + 2). In experiments 1 and 2, after a 7- and 14-d adaptation period, respectively, pigs were inoculated with saline solution containing ST (3.3 and 2.2 × 109 CFU/mL, respectively). Plasma alkaline phosphatase was measured on days 0 and 7 post-inoculation in experiment 1, and IAP (ileum, cecum, and colon) was measured in experiments 1 and 2. Correlations among ileal IAP and serum albumin and haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), and reduced:oxidized glutathione, ileal myeloperoxidase, ST shedding and ileal colonization, and post-inoculation average daily gain, feed intake (ADFI), and gain:feed were also analyzed. In experiment 1, plasma alkaline phosphatase was decreased with ST inoculation and the overall content was increased in LP-FAA+ compared with LP-FAA- (P < 0.05). Moreover, ileal IAP was increased in FAA+ compared with FAA- pigs in both studies (P < 0.05) regardless of adaptation time (P > 0.05). IAP was positively correlated with MDA and ADFI and negatively correlated with SOD and ST shedding in experiment 1 (P < 0.05). These results demonstrate a positive effect of FAA supplementation, but not adaptation period, on ileal alkaline phosphatase activity in Salmonella-challenged pigs, which may be associated with improvements in antioxidant balance.


Functional amino acid (FAA) supplementation has been shown to improve gut health and antioxidant defense in weaned piglets challenged with Salmonella Typhimurium (ST), regardless of dietary protein content. The beneficial effects were further improved when pigs were adapted to FAA for 2 wk prior to the ST challenge. Recent evidence has shown that intestinal alkaline phosphatase (IAP), which may be influenced by nutritional factors, attenuates intestinal inflammation, possibly due to gut microbiota modulation. This study is the first to identify that ileal IAP activity is increased following FAA supplementation in ST-challenged pigs, regardless of adaptation period. Moreover, ileal IAP activity correlated with systemic markers of antioxidant defense, which highlights the enzyme's role in attenuating systemic infection. Overall, the development of feeding strategies with positive effects on IAP activity is of interest, due to the enzyme's central role on the gut and whole-body homeostasis and health.


Assuntos
Ração Animal , Salmonella typhimurium , Fosfatase Alcalina , Aminoácidos , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Íleo , Suínos , Desmame
9.
Metabolites ; 11(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34940637

RESUMO

We have shown that feeding dogs fava bean (FB)-based diets for 7 days is safe and FB flour fermentation with Candida utilis has the potential to decrease FB anti-nutritional factors. In the present study, the effects of 28-day feeding of 4 different FB-based test dog foods containing moderate protein (~27% dry matter (DM)) were compared with two commercial diets with normal protein (NP, grain-containing, ~31% DM protein) or high protein (HP, grain-free, ~41% DM protein). Health parameters were investigated in beagles fed the NP or HP diets or using a randomized, crossover, 2 × 2 Latin square design of the FB diets: unfermented high-tannin (UF-HT), fermented high-tannin (FM-HT), unfermented low-tannin (UF-LT), and fermented low-tannin (FM-LT). The results showed that fermentation increased glucose tolerance, increased red blood cell numbers and increased systolic blood pressure, but decreased flow-mediated vasodilation. Taken together, the overall effect of fermentation appears to be beneficial and improved FB nutritional value. Most interesting, even though the HP diet was grain-free, the diet did contain added taurine, and no adverse effects on cardiac function were observed, while glucose tolerance was impaired compared to NP-fed dogs. In summary, this study did not find evidence of adverse cardiac effects of pulses in 'grain-free' diets, at least not in the relatively resistant beagle breed over a 28-day period. More importantly, fermentation with C. utilis shows promise to enhance health benefits of pulses such as FB in dog food.

10.
Animals (Basel) ; 11(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34573638

RESUMO

Significant variation in the birth weight of piglets has arisen due to increased sow prolificacy. Intestinal development and function may be affected by birth weight. Low birth weight (LBW) pigs may also have reduced feed intake, leading to further impairment of intestinal development. The objective of this study was to examine the intestinal development pattern of LBW and normal birth weight (NBW) piglets with normal nutrition (NN) or restricted nutrition (RN) in the pre-weaning period. Jejunal intestinal samples were analyzed for target gene expression and enzyme activity at d 28 (weaning) and d 56 (post-weaning). At d 28, excitatory amino acid transporter (EAAC1) and sodium-dependent neutral amino acid transporter (B0AT1) were downregulated in LBW compared to NBW pigs (p < 0.05). On d 56, B0AT1 and ASCT2 (glutamine transporter) were downregulated in RN compared to NN pigs (p < 0.05), regardless of birth weight. Peptide transporter 1 (PepT1) expression was downregulated in LBW compared to NBW pigs at 28 d (p < 0.05), with no effects of treatments at 56 d. Sodium-glucose transporter-1 (SGLT1) was upregulated in NBW-NN compared to LBW-NN pigs (p < 0.05) at 28 d. Alkaline phosphatase (ALP) was upregulated in LBW-RN at d 28. At d 56, claudin-3 (CLDN-3) and Zonular occludin-1 (ZO-1) were upregulated in NN compared to RN pigs (p < 0.05). There were no treatment effects on ALP, maltase, or sucrase activity at 28 d. However, at 56 d, ALP was upregulated in NBW-NN pigs while sucrase activity was upregulated in NN pigs (p < 0.05). The results demonstrate differences in jejunal gene expression associated with birth weight, with reduced gene expression of amino acid transporters (PepT1, EAAC1, B0AT1) in LBW compared to NBW pigs (p < 0.05). While neonatal nutrient restriction had minimal effects at 28 d and d 56 for tight junction protein transcript abundance, neutral amino acid transporter abundance was upregulated in NN pigs compared to RN piglets (p < 0.05).

11.
Porcine Health Manag ; 7(1): 48, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429170

RESUMO

BACKGROUND: Fecal calprotectin is largely applied as a non-invasive intestinal inflammation biomarker in human medicine. Previous studies in pigs investigated the levels of fecal calprotectin in healthy animals only. Thus, there is a knowledge gap regarding its application during infectious diarrhea. This study investigated the usefulness of fecal calprotectin as a biomarker of intestinal inflammation in Brachyspira hyodysenteriae and Salmonella Typhimurium infected pigs. RESULTS: Fecal samples from pigs with colitis (n = 18) were collected from animals experimentally inoculated with B. hyodysenteriae (n = 8) or from sham-inoculated controls (n = 3). Fecal samples from pigs with enteritis (n = 14) were collected from animals inoculated with Salmonella enterica serovar Typhimurium (n = 8) or from sham-inoculated controls (n = 4). For both groups, fecal samples were scored as: 0 = normal; 1 = soft, wet cement; 2 = watery feces; 3 = mucoid diarrhea; and 4 = bloody diarrhea. Fecal calprotectin levels were assayed using a sandwich ELISA, a turbidimetric immunoassay and a point-of-care dipstick test. Fecal calprotectin levels were greater in colitis samples scoring 4 versus ≤ 4 using ELISA, and in feces scoring 3 and 4 versus ≤ 1 using immunoturbidimetry (P < 0.05). No differences were found in calprotectin concentration among fecal scores for enteritis samples, regardless of the assay used. All samples were found below detection limits using the dipstick method. CONCLUSIONS: Fecal calprotectin levels are increased following the development of colitis, but do not significantly change due to enteritis. While practical, the use of commercially available human kits present sensitivity limitations. Further studies are needed to validate the field application of calprotectin as a marker of intestinal inflammation.

12.
J Anim Sci ; 99(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061959

RESUMO

Factors associated with the severity with which different challenge models (CMs) compromise growth performance in pigs were investigated using hierarchical clustering on principal components (HCPC) analysis. One hundred seventy-eight studies reporting growth performance variables (average daily gain [ADG], average daily feed intake [ADFI], gain:feed [GF], and final body weight [FBW]) of a Control (Ct) vs. a Challenged (Ch) group of pigs using different CMs (enteric [ENT], environmental [ENV], lipopolysaccharide [LPS], respiratory [RES], or sanitary condition [SAN] challenges) were included. Studies were grouped by similarity in performance in three clusters (C1, C2, and C3) by HCPC. The effects of CM, cluster, and sex (males [M], females [F], mixed [Mi]) were investigated. Linear (LRP) and quadratic (QRP) response plateau models were fitted to assess the interrelationships between the change in ADG (∆ADG) and ADFI (∆ADFI) and the duration of challenge. All variables increased from C1 through C3, except for GF, which decreased (P < 0.05). LPS was more detrimental to ADG than ENV, RES, and SAN models (P < 0.05). Furthermore, LPS also lowered GF more than all the other CMs (P < 0.05). The ∆ADG independent of ∆ADFI was significant in LPS and SAN (P < 0.05), showed a trend toward the significance in ENT and RES (P < 0.10), and was not significant in ENV (P > 0.10), while the ∆ADG dependent on ∆ADFI was significant in ENT, ENV, and LPS only (P < 0.05). The critical value of ∆ADFI influencing the ∆ADG was significant in pigs belonging to C1 (P < 0.05) but not C2 or C3 (P > 0.10). The ∆ADG independent of duration post-Ch (irreparable portion of growth) was significant in C1 and C2 pigs, whereas the ∆ADFI independent of duration post-Ch (irreparable portion of feed intake) was significant in C1 pigs only (P < 0.05). Moreover, the time for recovery of ADG and ADFI after Ch was significant in pigs belonging to C1 and C2 (P < 0.05). Control F showed reduced ADG compared with Ct-M, and Ch-F showed reduced ADFI compared with Ch-M (P < 0.05). Moreover, the irreparable portion of ΔADG was 4.8 higher in F (-187.7; P < 0.05) compared with M (-39.1; P < 0.05). There are significant differences in growth performance response to CM based on cluster and sex. Furthermore, bacterial lipopolysaccharide appears to be an appropriate noninfectious model for immune stimulation and growth impairment in pigs.


Assuntos
Ração Animal , Ingestão de Alimentos , Ração Animal/análise , Animais , Feminino , Masculino , Suínos
13.
Front Vet Sci ; 8: 653771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046444

RESUMO

Fava bean, which is available in high- and low-tannin varieties, is not an approved pet food ingredient and was not included in the "assumed to be safe" category based on its ability to cause favism and hemolytic anemia in susceptible humans. The effects of 7-day feeding of test canine diets containing moderate protein (~27%) were compared with two control commercial diets with normal (NP, grain-containing, ~25% protein) or high protein (HP, grain-free, ~41% protein). Fava bean diets were formulated either with or without Candida utilis fermentation processing to reduce antinutritional factors. Glucose tolerance, body weight, cardiovascular function, and blood parameters were investigated in beagles fed the NP or HP diets or a randomized, crossover, 2 × 2 Latin square design of the fava bean diets: unfermented high-tannin (UF-HT), fermented high-tannin (FM-HT), unfermented low-tannin (UF-LT), and fermented low-tannin (FM-LT). After 7 days, HP decreased red blood cells (RBC) (P < 0.05) compared with NP, while FM increased RBC compared with UF. HP increased blood bicarbonate, calcium, phosphorus, urea, cholesterol, and albumin:globulin ratio while decreasing bilirubin, liver enzymes, and total protein. Sodium:potassium ratio was increased in UF-HT, decreased in FM-HT, and intermediate in LT regardless of fermentation. Blood phosphorus was increased in HT. Blood amylase was increased in FM-HT and decreased in FM-LT, being intermediate in UF regardless of fava bean variety. Blood direct bilirubin was decreased in HT regardless of fermentation. Of note, left ventricular end-systolic volume and cardiac output were increased in NP compared with HP-fed dogs, but were normal and had no significant differences among the fava bean diets. As expected, plasma taurine, cystine, and cysteine levels were increased in HP- compared with NP-fed dogs. Plasma cysteine levels were increased in HT- compared with LT-fed dogs and in FM- compared with UF-fed dogs. Taken together, these results show that fava bean appears to be safe as a dog food ingredient at least in the short term, and its nutritional value appears improved by fermentation. Moreover, blood chemistry parameters and cardiovascular function were impacted by protein content which merits further investigation with longer term feeding trials.

14.
J Anim Sci ; 99(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33955450

RESUMO

We recently showed that dietary supplementation with key functional amino acids (FAA) improves growth performance and immune status of Salmonella Typhimurium (ST)-challenged pigs. It is not known if ST-challenged pigs will benefit from a longer adaptation period to FAA. The objective of this study was to evaluate the effects of different adaptation periods to diets containing FAA above requirements for growth on performance and immune response of weaned pigs subsequently challenged with ST. A total of 32 mixed-sex weanling pigs (11.6 ± 0.3 kg) were randomly assigned to 1 of 4 dietary treatments, being a basal amino acid (AA) profile fed throughout the experimental period (FAA-) or a functional AA profile (FAA+; Thr, Met, and Trp at 120% of requirements) fed only in the postinoculation (FAA+0), for 1 wk pre- and postinoculation (FAA+1), or throughout the experimental period (FAA+2). After a 14-d adaptation period, pigs were inoculated with ST (2.15 × 109 CFU/mL). Growth performance, body temperature, fecal score, acute-phase proteins, oxidant/antioxidant balance, score for ST shedding in feces and intestinal colonization, and fecal and digesta myeloperoxidase (MPO) were measured pre- and postinoculation. Postinoculation body temperature and fecal score, serum haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), and fecal MPO were increased while serum albumin and plasma reduced glutathione (GSH):oxidized glutathione (GSSG) were reduced compared to pre-inoculation (P < 0.05). Average daily gain and G:F were greater in FAA+2 pigs compared to FAA- pigs (P < 0.05). Serum albumin was higher in FAA+2 and FAA+1 compared to FAA+0 and FAA- pigs (P < 0.05) while FAA+2 pigs had lower haptoglobin compared to FAA- (P < 0.05). Plasma SOD was increased and GSH:GSSG was decreased in FAA- pigs compared to the other treatments (P < 0.05). Score for ST shedding in feces was progressively lower from d 1 to 6 regardless of treatment (P < 0.05) and was lower in FAA+2 pigs compared to FAA- and FAA+0 (P < 0.05). Counts of ST in colon digesta were higher in FAA- and FAA+0 pigs compared to FAA+2 (P < 0.05). Fecal and colonic digesta MPO were lower in FAA+2 and FAA+1 pigs compared to FAA- (P < 0.05). These results demonstrate a positive effect of a longer adaptation period to FAA-supplemented diets on performance and immune status of weaned pigs challenged with Salmonella.


Assuntos
Salmonella typhimurium , Doenças dos Suínos , Aminoácidos , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Fezes , Suínos
15.
J Anim Sci ; 99(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33825833

RESUMO

The objective of this study was to evaluate the effect of long-term feeding of graded levels of deoxynivalenol (DON) on performance, nutrient utilization, and organ health of grower-finisher pigs. A total of 240 mixed-sex grower-finisher pigs (35.9 ± 1.1 kg initial body weight, BW) were randomly assigned to 1 of 4 dietary treatments (6 pigs/pen; 10 pens/treatment) for 77 d. Diets consisted of a control diet without DON (CONT) and diets containing 1, 3, or 5 ppm DON (DON1, DON3, or DON5). Nitrogen-balance was determined in 1 pig/pen during weeks 6 and 12 of the study. Growth performance measures were taken weekly for average daily feed intake (ADFI), average daily gain (ADG), and gain:feed (GF) until day 77. Blood samples were collected on days 0, 14, 42, 56, and 84 from 1 pig/pen for analysis of indicators of liver and kidney function. On day 7, ADG and ADFI for pigs fed DON3 and DON5 diets were lower (P < 0.05) compared with DON1- and CONT-fed pigs. Overall, ADG and ADFI (days 0 to 77) were lower in DON3- and DON5-fed pigs compared with CONT and DON1 pigs (P < 0.05), with no difference in GF (P > 0.05). Final BW was reduced in DON3- and DON5-fed pigs (P < 0.05) compared with CONT and DON1, which were not different (P > 0.05). No significant (P > 0.05) treatment effects were observed on carcass characteristics. In the grower-phase, protein deposition (PD) was reduced in DON3 and DON5 pigs compared with CONT and DON1 pigs (P < 0.05). In the finisher phase, PD was not affected by dietary treatment (P > 0.05). There was no effect of dietary treatment on the majority of selected serum chemistry (P > 0.05). In summary, pigs exposed to diets containing > 1 ppm DON had reduced growth performance with little or no effect on nitrogen utilization, organ health, or carcass characteristics, suggesting that the negative effects of DON may be largely due to depressed feed intake.


Assuntos
Ração Animal , Tricotecenos , Ração Animal/análise , Animais , Dieta/veterinária , Nutrientes , Suínos , Tricotecenos/toxicidade
16.
J Anim Sci ; 99(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529342

RESUMO

High dietary protein may increase susceptibility of weaned pigs to enteric pathogens. Dietary supplementation with functional amino acids (FAA) may improve growth performance of pigs during disease challenge. The objective of this study was to evaluate the interactive effects of dietary protein content and FAA supplementation above requirements for growth on performance and immune response of weaned pigs challenged with Salmonella. Sixty-four mixed-sex weanling pigs (13.9 ± 0.82 kg) were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement with low (LP) or high protein (HP) content and basal (AA-) or FAA profile (AA+; Thr, Met, and Trp at 120% of requirements) as factors. After a 7-d adaptation period, pigs were inoculated with either a sterile saline solution (CT) or saline solution containing Salmonella Typhimurium (ST; 3.3 × 109 CFU/mL). Growth performance, body temperature, fecal score, acute-phase proteins, oxidant/antioxidant balance, ST shedding score in feces and intestinal colonization, fecal and digesta myeloperoxidase (MPO), and plasma urea nitrogen (PUN) were measured pre- and postinoculation. There were no dietary effects on any measures pre-inoculation or post-CT inoculation (P > 0.05). Inoculation with ST increased body temperature and fecal score (P < 0.05), serum haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), PUN, and fecal MPO, and decreased serum albumin and plasma reduced glutathione (GSH):oxidized glutathione (GSSG) compared with CT pigs (P < 0.05). ST-inoculation reduced average daily gain (ADG) and feed intake (ADFI) vs. CT pigs (P < 0.05) but was increased by AA+ vs. AA- in ST pigs (P < 0.05). Serum albumin and GSH:GSSG were increased while haptoglobin and SOD were decreased in ST-inoculated pigs fed AA+ vs. AA- (P < 0.05). PUN was higher in HP vs. LP-fed pigs postinoculation (P < 0.05). Fecal ST score was increased in ST-inoculated pigs on days 1 and 2 postinoculation and declined by day 6 (P < 0.05) in all pigs while the overall score was reduced in AA+ vs. AA- pigs (P < 0.05). Cecal digesta ST score was higher in HP vs. LP-fed pigs and were lower in AA+ compared with AA- fed pigs in the colon (P < 0.05). Fecal and digesta MPO were reduced in ST pigs fed AA+ vs. AA- (P < 0.05). These results demonstrate a positive effect of FAA supplementation, with minimal effects of dietary protein, on performance and immune status in weaned pigs challenged with Salmonella.


Assuntos
Aminoácidos/administração & dosagem , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Salmonella typhimurium , Doenças dos Suínos , Suínos/crescimento & desenvolvimento , Animais , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA