Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Theranostics ; 13(11): 3707-3724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441602

RESUMO

Background: Extracellular vesicles (EVs) carry bioactive molecules associated with various biological processes, including miRNAs. In both Huntington's disease (HD) models and human samples, altered expression of miRNAs involved in synapse regulation was reported. Recently, the use of EV cargo to reverse phenotypic alterations in disease models with synaptopathy as the end result of the pathophysiological cascade has become an interesting possibility. Methods: Here, we assessed the contribution of EVs to GABAergic synaptic alterations using a human HD model and studied the miRNA content of isolated EVs. Results: After differentiating human induced pluripotent stem cells into electrophysiologically active striatal-like GABAergic neurons, we found that HD-derived neurons displayed reduced density of inhibitory synapse markers and GABA receptor-mediated ionotropic signaling. Treatment with EVs secreted by control (CTR) fibroblasts reversed the deficits in GABAergic synaptic transmission and increased the density of inhibitory synapses in HD-derived neuron cultures, while EVs from HD-derived fibroblasts had the opposite effects on CTR-derived neurons. Moreover, analysis of miRNAs from purified EVs identified a set of differentially expressed miRNAs between manifest HD, premanifest, and CTR lines with predicted synaptic targets. Conclusion: The EV-mediated reversal of the abnormal GABAergic phenotype in HD-derived neurons reinforces the potential role of EV-miRNAs on synapse regulation.


Assuntos
Vesículas Extracelulares , Doença de Huntington , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , Neurônios GABAérgicos/metabolismo , Vesículas Extracelulares/metabolismo
2.
Med Sci Sports Exerc ; 55(9): 1651-1659, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005493

RESUMO

PURPOSE: The optimal intensity of resistance training (RT) to improve muscular, physical performance, and metabolic adaptations still needs to be well established for older adults. Based on current position statements, we compared the effects of two different RT loads on muscular strength, functional performance, skeletal muscle mass, hydration status, and metabolic biomarkers in older women. METHODS: One hundred one older women were randomly allocated to perform a 12-wk whole-body RT program (eight exercises, three sets, three nonconsecutive days a week) into two groups: 8-12 repetitions maximum (RM) and 10-15RM. Muscular strength (1RM tests), physical performance (motor tests), skeletal muscle mass (dual-energy X-ray absorptiometry), hydration status (bioelectrical impedance), and metabolic biomarkers (glucose, total cholesterol, HDL-c, HDL-c, triglycerides, and C-reactive protein) were measured at baseline and posttraining. RESULTS: Regarding muscular strength, 8-12RM promoted higher 1RM increases in chest press (+23.2% vs +10.7%, P < 0.01) and preacher curl (+15.7% vs +7.4%, P < 0.01), but not in leg extension (+14.9% vs +12.3%, P > 0.05). Both groups improved functional performance ( P < 0.05) in gait speed (4.6%-5.6%), 30 s chair stand (4.6%-5.9%), and 6 min walking (6.7%-7.0%) tests, with no between-group differences ( P > 0.05). The 10-15RM group elicited superior improves in the hydration status (total body water, intracellular and extracellular water; P < 0.01), and higher gains of skeletal muscle mass (2.5% vs 6.3%, P < 0.01), upper (3.9% vs 9.0%, P < 0.01) and lower limbs lean soft tissue (2.1% vs 5.4%, P < 0.01). Both groups improved their metabolic profile. However, 10-15RM elicited greater glucose reductions (-0.2% vs -4.9%, P < 0.05) and greater HDL-c increases (-0.2% vs +4.7%, P < 0.01), with no between-group differences for the other metabolic biomarkers ( P > 0.05). CONCLUSIONS: Our results suggest that 8-2RM seems more effective than 10-15RM for increasing upper limbs' muscular strength, whereas the adaptative responses for lower limbs and functional performance appear similar in older women. In contrast, 10-15RM seems more effective for skeletal muscle mass gains, and increased intracellular hydration and improvements in metabolic profile may accompany this adaptation.


Assuntos
Treinamento Resistido , Humanos , Feminino , Idoso , Treinamento Resistido/métodos , Músculo Esquelético/fisiologia , Força Muscular/fisiologia , Glucose/metabolismo , Biomarcadores/metabolismo
3.
Mol Neurobiol ; 60(3): 1659-1674, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36547848

RESUMO

Extracellular ATP can be a danger signal, but its role in striatal circuits afflicted in Parkinson's disease (PD) is unclear and was now investigated. ATP was particularly released at high stimulation intensities from purified striatal nerve terminals of mice, which were endowed with different ATP-P2 receptors (P2R), although P2R antagonists did not alter corticostriatal transmission or plasticity. Instead, ATP was extracellularly catabolized into adenosine through CD73 to activate adenosine A2A receptors (A2AR) modulating corticostriatal long-term potentiation (LTP) in mice. In the presymptomatic phase of a 6-hydroxydopamine rat model of PD, ATP release from striatal nerve terminals was increased and was responsible for a greater impact of CD73 and A2AR on corticostriatal LTP. These observations identify increased ATP release and ATP-derived formation of extracellular adenosine bolstering A2AR activation as a key pathway responsible for abnormal synaptic plasticity in circuits involved in the onset of PD motor symptoms. The translation of these findings to humans prompts extending the use of A2AR antagonists from only co-adjuvants of motor control in Parkinsonian patients to neuroprotective drugs delaying the onset of motor symptoms.


Assuntos
Adenosina , Doença de Parkinson , Ratos , Humanos , Camundongos , Animais , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Potenciação de Longa Duração , Plasticidade Neuronal
4.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231023

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are important postsynaptic receptors that contribute to normal synaptic function and cell survival; however, when overactivated, as in Huntington's disease (HD), NMDARs cause excitotoxicity. HD-affected striatal neurons show altered NMDAR currents and augmented ratio of surface to internal GluN2B-containing NMDARs, with augmented accumulation at extrasynaptic sites. Fyn protein is a member of the Src kinase family (SKF) with an important role in NMDARs phosphorylation and synaptic localization and function; recently, we demonstrated that Fyn is reduced in several HD models. Thus, in this study, we aimed to explore the impact of HD-mediated altered Fyn levels at post-synaptic density (PSD), and their role in distorted NMDARs function and localization, and intracellular neuroprotective pathways in YAC128 mouse primary striatal neurons. We show that reduced synaptic Fyn levels and activity in HD mouse striatal neurons is related to decreased phosphorylation of synaptic GluN2B-composed NMDARs; this occurs concomitantly with augmented extrasynaptic NMDARs activity and currents and reduced cAMP response element-binding protein (CREB) activation, along with induction of cell death pathways. Importantly, expression of a constitutive active form of SKF reestablishes NMDARs localization, phosphorylation, and function at PSD in YAC128 mouse neurons. Enhanced SKF levels and activity also promotes CREB activation and reduces caspase-3 activation in YAC128 mouse striatal neurons. This work supports, for the first time, a relevant role for Fyn protein in PSD modulation, controlling NMDARs synaptic function in HD, and favoring neuroprotective pathways and cell survival. In this respect, Fyn Tyr kinase constitutes an important potential HD therapeutic target directly acting at PSD.


Assuntos
Doença de Huntington , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de N-Metil-D-Aspartato , Animais , Caspase 3/metabolismo , Corpo Estriado/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Doença de Huntington/metabolismo , Camundongos , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Sci Rep ; 12(1): 14690, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038626

RESUMO

The molecular mechanisms underlying circuit re-wiring in the mature brain remains ill-defined. An eloquent example of adult circuit remodelling is the hippocampal mossy fiber (MF) sprouting found in diseases such as temporal lobe epilepsy. The molecular determinants underlying this retrograde re-wiring remain unclear. This may involve signaling system(s) controlling axon specification/growth during neurodevelopment reactivated during epileptogenesis. Since adenosine A2A receptors (A2AR) control axon formation/outgrowth and synapse stabilization during development, we now examined the contribution of A2AR to MF sprouting. A2AR blockade significantly attenuated status epilepticus(SE)-induced MF sprouting in a rat pilocarpine model. This involves A2AR located in dentate granule cells since their knockdown selectively in dentate granule cells reduced MF sprouting, most likely through the ability of A2AR to induce the formation/outgrowth of abnormal secondary axons found in rat hippocampal neurons. These A2AR should be activated by extracellular ATP-derived adenosine since a similar prevention/attenuation of SE-induced hippocampal MF sprouting was observed in CD73 knockout mice. These findings demonstrate that A2AR contribute to epilepsy-related MF sprouting, most likely through the reactivation of the ability of A2AR to control axon formation/outgrowth observed during neurodevelopment. These results frame the CD73-A2AR axis as a regulator of circuit remodeling in the mature brain.


Assuntos
Adenosina , Epilepsia do Lobo Temporal , Receptor A2A de Adenosina/metabolismo , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Camundongos , Fibras Musgosas Hipocampais , Pilocarpina/farmacologia , Ratos , Sinapses/fisiologia
6.
Science ; 374(6568): eabk2055, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34735259

RESUMO

During development, neural circuit formation requires the stabilization of active γ-aminobutyric acid­mediated (GABAergic) synapses and the elimination of inactive ones. Here, we demonstrate that, although the activation of postsynaptic GABA type A receptors (GABAARs) and adenosine A2A receptors (A2ARs) stabilizes GABAergic synapses, only A2AR activation is sufficient. Both GABAAR- and A2AR-dependent signaling pathways act synergistically to produce adenosine 3',5'-monophosphate through the recruitment of the calcium­calmodulin­adenylyl cyclase pathway. Protein kinase A, thus activated, phosphorylates gephyrin on serine residue 303, which is required for GABAAR stabilization. Finally, the stabilization of pre- and postsynaptic GABAergic elements involves the interaction between gephyrin and the synaptogenic membrane protein Slitrk3. We propose that A2ARs act as detectors of active GABAergic synapses releasing GABA, adenosine triphosphate, and adenosine to regulate their fate toward stabilization or elimination.


Assuntos
Adenosina/metabolismo , Hipocampo/crescimento & desenvolvimento , Neurônios/fisiologia , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo , Antagonistas do Receptor A2 de Adenosina , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Cognição , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipocampo/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso , Fosforilação , Receptor A2A de Adenosina/genética , Receptores de GABA-A/metabolismo
7.
Cereb Cortex ; 31(12): 5652-5663, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34184030

RESUMO

Cortical interneurons born in the subpallium reach the cortex through tangential migration, whereas pyramidal cells reach their final position by radial migration. Purinergic signaling via P2Y1 receptors controls the migration of intermediate precursor cells from the ventricular zone to the subventricular zone. It was also reported that the blockade of A2A receptors (A2AR) controls the tangential migration of somatostatin+ interneurons. Here we found that A2AR control radial migration of cortical projection neurons. In A2AR-knockout (KO) mouse embryos or naïve mouse embryos exposed to an A2AR antagonist, we observed an accumulation of early-born migrating neurons in the lower intermediate zone at late embryogenesis. In utero knockdown of A2AR also caused an accumulation of neurons at the lower intermediate zone before birth. This entails the presently identified ability of A2AR to promote multipolar-bipolar transition and axon formation, critical for the transition of migrating neurons from the intermediate zone to the cortical plate. This effect seems to require extracellular ATP-derived adenosine since a similar accumulation of neurons at the lower intermediate zone was observed in mice lacking ecto-5'-nucleotidase (CD73-KO). These findings frame adenosine as a fine-tune regulator of the wiring of cortical inhibitory and excitatory networks.


Assuntos
Neurônios , Receptor A2A de Adenosina , Animais , Axônios , Movimento Celular/fisiologia , Interneurônios , Camundongos , Neurônios/fisiologia , Células Piramidais/fisiologia , Receptor A2A de Adenosina/genética
8.
Elife ; 92020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32338603

RESUMO

piRNAs play a critical role in the regulation of transposons and other germline genes. In Caenorhabditis elegans, regulation of piRNA target genes is mediated by the mutator complex, which synthesizes high levels of siRNAs through the activity of an RNA-dependent RNA polymerase. However, the steps between mRNA recognition by the piRNA pathway and siRNA amplification by the mutator complex are unknown. Here, we identify the Tudor domain protein, SIMR-1, as acting downstream of piRNA production and upstream of mutator complex-dependent siRNA biogenesis. Interestingly, SIMR-1 also localizes to distinct subcellular foci adjacent to P granules and Mutator foci, two phase-separated condensates that are the sites of piRNA-dependent mRNA recognition and mutator complex-dependent siRNA amplification, respectively. Thus, our data suggests a role for multiple perinuclear condensates in organizing the piRNA pathway and promoting mRNA regulation by the mutator complex.


In the biological world, a process known as RNA interference helps cells to switch genes on and off and to defend themselves against harmful genetic material. This mechanism works by deactivating RNA sequences, the molecular templates cells can use to create proteins. Overall, RNA interference relies on the cell creating small RNA molecules that can target and inhibit the harmful RNA sequences that need to be silenced. More precisely, in round worms such as Caenorhabditis elegans, RNA interference happens in two steps. First, primary small RNAs identify the target sequences, which are then combatted by newly synthetised, secondary small RNAs. A number of proteins are also involved in both steps of the process. RNA interference is particularly important to preserve fertility, guarding sex cells against 'rogue' segments of genetic information that could be passed on to the next generation. In future sex cells, the proteins involved in RNA interference cluster together, forming a structure called a germ granule. Yet, little is known about the roles and identity of these proteins. To fill this knowledge gap, Manage et al. focused on the second stage of the RNA interference pathway in the germ granules of C. elegans, examining the molecules that physically interact with a key protein. This work revealed a new protein called SIMR-1. Looking into the role of SIMR-1 showed that the protein is required to amplify secondary small RNAs, but not to identify target sequences. However, it only promotes the creation of secondary small RNAs if a specific subtype of primary small RNAs have recognized the target RNAs for silencing. Further experiments also showed that within the germ granule, SIMR-1 is present in a separate substructure different from any compartment previously identified. This suggests that each substep of the RNA interference process takes place at a different location in the granule. In both C. elegans and humans, disruptions in the RNA interference pathway can lead to conditions such as cancer or infertility. Dissecting the roles of the proteins involved in this process in roundworms may help to better grasp how this process unfolds in mammals, and how it could be corrected in the case of disease.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Domínio Tudor/genética , Animais , Feminino , Masculino
9.
Genes Dev ; 33(13-14): 857-870, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31147388

RESUMO

Piwi proteins are important for germ cell development in most animals. These proteins are guided to specific targets by small guide RNAs, referred to as piRNAs or 21U RNAs in Caenorhabditis elegans In this organism, even though genetic screens have uncovered 21U RNA biogenesis factors, little is known about how these factors interact or what they do. Based on the previously identified 21U biogenesis factor PID-1 (piRNA-induced silencing-defective 1), we here define a novel protein complex, PETISCO (PID-3, ERH-2, TOFU-6, and IFE-3 small RNA complex), that is required for 21U RNA biogenesis. PETISCO contains both potential 5' cap and 5' phosphate RNA-binding domains and interacts with capped 21U precursor RNA. We resolved the architecture of PETISCO and revealed a second function for PETISCO in embryonic development. This essential function of PETISCO is mediated not by PID-1 but by the novel protein TOST-1 (twenty-one U pathway antagonist). In contrast, TOST-1 is not essential for 21U RNA biogenesis. Both PID-1 and TOST-1 interact directly with ERH-2 using a conserved sequence motif. Finally, our data suggest a role for TOST-1:PETISCO in SL1 homeostasis in the early embryo. Our work describes a key complex for 21U RNA processing in C. elegans and strengthens the view that 21U RNA biogenesis is built on an snRNA-related pathway.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Embrião não Mamífero/fisiologia , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , RNA Nucleolar Pequeno/biossíntese , Animais , RNA Nuclear Pequeno/metabolismo
10.
Semin Cell Dev Biol ; 95: 34-41, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30529149

RESUMO

ATP and adenosine are released from cells as a function of their metabolic activity, being important cell-to-cell communication signals. Both purines are also released from neurons in an activity-dependent manner, with several established roles to fine tune brain function in adults, as best heralded by the effects of caffeine, an antagonist of adenosine receptors. Purines are also dynamically released from early neurogenesis and different purine receptors are dynamically expressed throughout development. Accordingly, emerging evidence supports multiple roles for purinergic signalling in the control of different processes of brain development, such as embryonic neurogenesis, migration of principal neurons and interneurons, guidance for neuronal connectivity, synaptogenesis and synaptic stability/elimination. Although major efforts are still required to unravel the time and space-related engagement of the different components of the purinergic system, the relevance of purines in brain development is heralded by their association with neurodevelopmental disorders, positing novel opportunities to understand and correct brain wiring.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Purinas/metabolismo , Transdução de Sinais , Animais , Humanos , Rede Nervosa/fisiologia , Neurogênese , Neurônios/citologia , Neurônios/metabolismo
11.
BMC Health Serv Res ; 18(1): 490, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29940942

RESUMO

BACKGROUND: The length of time between symptom onset and reperfusion therapy in patients with ST-segment elevation acute myocardial infarction (STEMI) is a key determinant of mortality. Information on this delay is scarce, particularly for developing countries. The objective of the study is to prospectively evaluate the individual components of reperfusion time (RT) in patients with STEMI treated at a University Hospital in 2012. METHODS: Medical records were reviewed to determine RT, its main (patient delay time [PDT] and system delay time [SDT]) and secondary components and hospital access variables. Cognitive responses were evaluated using a semi-structured questionnaire. RESULTS: A total of 50 patients with a mean age of 59 years (SD = 10.5) were included, 64% of whom were male. The median RT was 430 min, with an interquartile range of 315-750 min. Regarding the composition of RT in the sample, PDT corresponded to 18.9% and SDT to 81.1%. Emergency medical services were used in 23.5% of cases. Patients treated in intermediate care units showed a significant increase in SDT (p = 0.008). Regarding cognitive variables, PDT was approximately 40 min longer among those who answered "I didn't think it was serious" (p = 0.024). CONCLUSIONS: In a Brazilian tertiary public hospital, RT was higher than that recommended by international guidelines, mainly because of long SDT, which was negatively affected by time spent in intermediate care units. Emergency Medical Services underutilization was noted. A patient's low perception of severity increased PDT.


Assuntos
Serviços Médicos de Emergência/estatística & dados numéricos , Reperfusão Miocárdica , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Tempo para o Tratamento , Idoso , Brasil , Cateterismo Cardíaco , Feminino , Hospitais de Ensino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
12.
Cell Death Dis ; 9(3): 297, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463792

RESUMO

Despite the characteristic etiologies and phenotypes, different brain disorders rely on common pathogenic events. Glutamate-induced neurotoxicity is a pathogenic event shared by different brain disorders. Another event occurring in different brain pathological conditions is the increase of the extracellular ATP levels, which is now recognized as a danger and harmful signal in the brain, as heralded by the ability of P2 receptors (P2Rs) to affect a wide range of brain disorders. Yet, how ATP and P2R contribute to neurodegeneration remains poorly defined. For that purpose, we now examined the contribution of extracellular ATP and P2Rs to glutamate-induced neurodegeneration. We found both in vitro and in vivo that ATP/ADP through the activation of P2Y1R contributes to glutamate-induced neuronal death in the rat hippocampus. We found in cultured rat hippocampal neurons that the exposure to glutamate (100 µM) for 30 min triggers a sustained increase of extracellular ATP levels, which contributes to NMDA receptor (NMDAR)-mediated hippocampal neuronal death through the activation of P2Y1R. We also determined that P2Y1R is involved in excitotoxicity in vivo as the blockade of P2Y1R significantly attenuated rat hippocampal neuronal death upon the systemic administration of kainic acid or upon the intrahippocampal injection of quinolinic acid. This contribution of P2Y1R fades with increasing intensity of excitotoxic conditions, which indicates that P2Y1R is not contributing directly to neurodegeneration, rather behaving as a catalyst decreasing the threshold from which glutamate becomes neurotoxic. Moreover, we unraveled that such excitotoxicity process began with an early synaptotoxicity that was also prevented/attenuated by the antagonism of P2Y1R, both in vitro and in vivo. This should rely on the observed glutamate-induced calpain-mediated axonal cytoskeleton damage, most likely favored by a P2Y1R-driven increase of NMDAR-mediated Ca2+ entry selectively in axons. This may constitute a degenerative mechanism shared by different brain diseases, particularly relevant at initial pathogenic stages.


Assuntos
Ácido Glutâmico/toxicidade , Doenças Neurodegenerativas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Morte Celular , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Masculino , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores Purinérgicos P2Y1/genética
13.
Brain Res Bull ; 124: 222-30, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208730

RESUMO

Here we asked if insulin activation of the nucleus accumbens in vitro is reflected by an increase in (3)H-deoxyglucose ([(3)H]DG) uptake, thus subserving a new model to study molecular mechanisms of central insulin actions. Additionally, we investigated the dependence of this insulin effect on endocannabinoids and corticosteroids, two major culprits in insulin resistance. We found that in acute accumbal slices, insulin (3 and 300nM but not at 0.3nM) produced an increase in [(3)H]DG uptake. The synthetic cannabinoid agonist, WIN55212-2 (500nM) and the glucocorticoid dexamethasone (10µM), impaired insulin (300nM) action on [(3)H]DG uptake. The glucocorticoid receptor (GcR) antagonist, mifepristone (10µM) prevented dexamethasone from inhibiting insulin's action. Strikingly, this anti-insulin action of dexamethasone was also blocked by two CB1 cannabinoid receptor (CB1R) antagonists, O-2050 (500nM) and SR141716A (500nM), as well as by tetrahydrolipstatin (10µM), an inhibitor of diacylglycerol lipases-the enzymes responsible for the synthesis of the endocannabinoid, 2-arachidonoyl-glycerol (2-AG). On the other hand, the blockade of the post-synaptic 2-AG metabolizing enzymes, α,ß-serine hydrolase domain 6/12 by WWL70 (1µM) also prevented the action of insulin, probably via increasing endogenous 2-AG tone. Additionally, an anti-insulin receptor (InsR) antibody immunoprecipitated CB1Rs from accumbal homogenates, indicating a physical complexing of CB1Rs with InsRs that supports their functional interaction. Altogether, insulin stimulates glucose uptake in the nucleus accumbens. Accumbal GcR activation triggers the synthesis of 2-AG that in turn binds to the known CB1R-InsR heteromer, thus impeding insulin signaling.


Assuntos
Endocanabinoides/metabolismo , Glucocorticoides/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Analgésicos/farmacologia , Animais , Benzoxazinas/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Desoxiglucose/metabolismo , Dexametasona/farmacologia , Dronabinol/análogos & derivados , Dronabinol/farmacologia , Inibidores Enzimáticos/farmacologia , Glucocorticoides/farmacologia , Ácido Glutâmico/farmacologia , Técnicas In Vitro , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Piranos/farmacologia , Ratos , Ratos Wistar , Receptor de Insulina/metabolismo , Trítio/metabolismo
14.
Neuropharmacology ; 110(Pt A): 519-529, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26976670

RESUMO

Cannabinoid CB2 receptors (CB2Rs) are emerging as important therapeutic targets in brain disorders that typically involve neurometabolic alterations. We here addressed the possible role of CB2Rs in the regulation of glucose uptake in the mouse brain. To that aim, we have undertaken 1) measurement of (3)H-deoxyglucose uptake in cultured cortical astrocytes and neurons and in acute hippocampal slices; 2) real-time visualization of fluorescently labeled deoxyglucose uptake in superfused hippocampal slices; and 3) in vivo PET imaging of cerebral (18)F-fluorodeoxyglucose uptake. We now show that both selective (JWH133 and GP1a) as well as non-selective (WIN55212-2) CB2R agonists, but not the CB1R-selective agonist, ACEA, stimulate glucose uptake, in a manner that is sensitive to the CB2R-selective antagonist, AM630. Glucose uptake is stimulated in astrocytes and neurons in culture, in acute hippocampal slices, in different brain areas of young adult male C57Bl/6j and CD-1 mice, as well as in middle-aged C57Bl/6j mice. Among the endocannabinoid metabolizing enzymes, the selective inhibition of COX-2, rather than that of FAAH, MAGL or α,ßDH6/12, also stimulates the uptake of glucose in hippocampal slices of middle-aged mice, an effect that was again prevented by AM630. However, we found the levels of the endocannabinoid, anandamide reduced in the hippocampus of TgAPP-2576 mice (a model of ß-amyloidosis), and likely as a consequence, COX-2 inhibition failed to stimulate glucose uptake in these mice. Together, these results reveal a novel general glucoregulatory role for CB2Rs in the brain, raising therapeutic interest in CB2R agonists as nootropic agents.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Glucose/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide , Amiloidose/diagnóstico por imagem , Amiloidose/tratamento farmacológico , Amiloidose/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Moduladores de Receptores de Canabinoides/farmacologia , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Endocanabinoides/metabolismo , Hidroxietilrutosídeo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nootrópicos/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Técnicas de Cultura de Tecidos
15.
Neuron ; 89(3): 461-71, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26844830

RESUMO

The development and homeostasis of neurons relies heavily on the selective targeting of vesicles into axon and dendrites. Microtubule-based motor proteins play an important role in polarized transport; however, the sorting mechanism to exclude dendritic cargo from the axon is unclear. We show that the dynein regulator NDEL1 controls somatodendritic cargo transport at the axon initial segment (AIS). NDEL1 localizes to the AIS via an interaction with the scaffold protein Ankyrin-G. Depletion of NDEL1 or its binding partner LIS1 results in both cell-wide and local defects, including the non-polarized trafficking of dendritic cargo through the AIS. We propose a model in which LIS1 is a critical mediator of local NDEL1-based dynein activation at the AIS. By localizing to the AIS, NDEL1 facilitates the reversal of somatodendritic cargos in the proximal axon.


Assuntos
Axônios/metabolismo , Proteínas de Transporte/metabolismo , Dineínas/metabolismo , Animais , Anquirinas/metabolismo , Proteínas de Transporte/genética , Citoesqueleto/metabolismo , Camundongos , Camundongos Knockout , Transporte Proteico , Vesículas Sinápticas/metabolismo
16.
Neuropharmacology ; 105: 241-257, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26801076

RESUMO

Previous studies documented a cross-talk between purinergic P2X (P2XR) and nicotinic acetylcholine receptors (nAChR) in heterologous expression systems and peripheral preparations. We now investigated if this occurred in native brain preparations and probed its physiological function. We found that P2XR and nAChR were enriched in hippocampal terminals, where both P2X1-3R and α3, but not α4, nAChR subunits were located in the active zone and in dopamine-ß-hydroxylase-positive hippocampal terminals. Notably, P2XR ligands displaced nAChR binding and nAChR ligands displaced P2XR binding to hippocampal synaptosomes. In addition, a negative P2XR/nAChR cross-talk was observed in the control of the evoked release of noradrenaline from rat hippocampal synaptosomes, characterized by a less-than-additive facilitatory effect upon co-activation of both receptors. This activity-dependent cross-inhibition was confirmed in Xenopus oocytes transfected with P2X1-3Rs and α3ß2 (but not α4ß2) nAChR. Besides, P2X2 co-immunoprecipitated α3ß2 (but not α4ß2) nAChR, both in HEK cells and rat hippocampal membranes indicating that this functional interaction is supported by a physical association between P2XR and nAChR. Moreover, eliminating extracellular ATP with apyrase in hippocampal slices promoted the inhibitory effect of the nAChR antagonist tubocurarine on noradrenaline release induced by high- but not low-frequency stimulation. Overall, these results provide integrated biochemical, pharmacological and functional evidence showing that P2X1-3R and α3ß2 nAChR are physically and functionally interconnected at the presynaptic level to control excessive noradrenergic terminal activation upon intense synaptic firing in the hippocampus.


Assuntos
Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Canais Iônicos/fisiologia , Receptores Nicotínicos/fisiologia , Receptores Pré-Sinápticos/fisiologia , Receptores Purinérgicos P2X/fisiologia , Animais , Dopamina beta-Hidroxilase/metabolismo , Células HEK293 , Humanos , Masculino , Terminações Nervosas/metabolismo , Norepinefrina/metabolismo , Oócitos , Ratos , Ratos Wistar , Receptor Cross-Talk/fisiologia , Receptores Purinérgicos P2X1/fisiologia , Receptores Purinérgicos P2X2/fisiologia , Receptores Purinérgicos P2X3/fisiologia , Sinaptossomos/metabolismo , Xenopus , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
17.
Purinergic Signal ; 11(4): 561-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26446689

RESUMO

ATP consumption during intense neuronal activity leads to peaks of both extracellular adenosine levels and increased glucose uptake in the brain. Here, we investigated the hypothesis that the activation of the low-affinity adenosine receptor, the A2B receptor (A(2B)R), promotes glucose uptake in neurons and astrocytes, thereby linking brain activity with energy metabolism. To this end, we mapped the spatiotemporal accumulation of the fluorescent-labelled deoxyglucose, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), in superfused acute hippocampal slices of C57Bl/6j mice. Bath application of the A(2B)R agonist BAY606583 (300 nM) triggered an immediate and stable (>10 min) increase of the velocity of 2-NBDG accumulation throughout hippocampal slices. This was abolished with the pretreatment with the selective A(2B)R antagonist, MRS1754 (200 nM), and was also absent in A(2B)R null-mutant mice. In mouse primary astrocytic or neuronal cultures, BAY606583 similarly increased (3)H-deoxyglucose uptake in the following 20 min incubation period, which was again abolished by a pretreatment with MRS1754. Finally, incubation of hippocampal, frontocortical, or striatal slices of C57Bl/6j mice at 37 °C, with either MRS1754 (200 nM) or adenosine deaminase (3 U/mL) significantly reduced glucose uptake. Furthermore, A(2B)R blockade diminished newly synthesized glycogen content and at least in the striatum, increased lactate release. In conclusion, we report here that A(2B)R activation is associated with an instant and tonic increase of glucose transport into neurons and astrocytes in the mouse brain. These prompt further investigations to evaluate the clinical potential of this novel glucoregulator mechanism.


Assuntos
4-Cloro-7-nitrobenzofurazano/análogos & derivados , Agonistas do Receptor A2 de Adenosina/farmacologia , Desoxiglucose/análogos & derivados , Glucose/metabolismo , Prosencéfalo/metabolismo , Receptor A2B de Adenosina/efeitos dos fármacos , Receptor A2B de Adenosina/metabolismo , 4-Cloro-7-nitrobenzofurazano/farmacologia , Animais , Astrócitos/metabolismo , Células Cultivadas , Desoxiglucose/metabolismo , Desoxiglucose/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Técnicas In Vitro , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Prosencéfalo/efeitos dos fármacos , Receptor A2B de Adenosina/genética
18.
Front Neurosci ; 9: 148, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25972780

RESUMO

ATP is released in an activity-dependent manner from different cell types in the brain, fulfilling different roles as a neurotransmitter, neuromodulator, in astrocyte-to-neuron communication, propagating astrocytic responses and formatting microglia responses. This involves the activation of different ATP P2 receptors (P2R) as well as adenosine receptors upon extracellular ATP catabolism by ecto-nucleotidases. Notably, brain noxious stimuli trigger a sustained increase of extracellular ATP, which plays a key role as danger signal in the brain. This involves a combined action of extracellular ATP in different cell types, namely increasing the susceptibility of neurons to damage, promoting astrogliosis and recruiting and formatting microglia to mount neuroinflammatory responses. Such actions involve the activation of different receptors, as heralded by neuroprotective effects resulting from blockade mainly of P2X7R, P2Y1R and adenosine A2A receptors (A2AR), which hierarchy, cooperation and/or redundancy is still not resolved. These pleiotropic functions of ATP as a danger signal in brain damage prompt a therapeutic interest to multi-target different purinergic receptors to provide maximal opportunities for neuroprotection.

19.
Eur J Neurosci ; 41(7): 878-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25704806

RESUMO

Adenosine is a neuromodulator mostly acting through A1 (inhibitory) and A2A (excitatory) receptors in the brain. A2B receptors (A(2B)R) are G(s/q)--protein-coupled receptors with low expression in the brain. As A(2B)R function is largely unknown, we have now explored their role in the mouse hippocampus. We performed electrophysiological extracellular recordings in mouse hippocampal slices, and immunological analysis of nerve terminals and glutamate release in hippocampal slices and synaptosomes. Additionally, A(2B)R-knockout (A(2B)R-KO) and C57/BL6 mice were submitted to a behavioural test battery (open field, elevated plus-maze, Y-maze). The A(2B)R agonist BAY60-6583 (300 nM) decreased the paired-pulse stimulation ratio, an effect prevented by the A(2B)R antagonist MRS 1754 (200 nM) and abrogated in A(2B)R-KO mice. Accordingly, A(2B)R immunoreactivity was present in 73 ± 5% of glutamatergic nerve terminals, i.e. those immunopositive for vesicular glutamate transporters. Furthermore, BAY 60-6583 attenuated the A(1)R control of synaptic transmission, both the A(1)R inhibition caused by 2-chloroadenosine (0.1-1 µM) and the disinhibition caused by the A(1)R antagonist DPCPX (100 nM), both effects prevented by MRS 1754 and abrogated in A(2B)R-KO mice. BAY 60-6583 decreased glutamate release in slices and also attenuated the A(1)R inhibition (CPA 100 nM). A(2B)R-KO mice displayed a modified exploratory behaviour with an increased time in the central areas of the open field, elevated plus-maze and the Y-maze and no alteration of locomotion, anxiety or working memory. We conclude that A(2B)R are present in hippocampal glutamatergic terminals where they counteract the predominant A(1)R-mediated inhibition of synaptic transmission, impacting on exploratory behaviour.


Assuntos
Hipocampo/fisiologia , Receptor A1 de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Transmissão Sináptica/fisiologia , 2-Cloroadenosina/farmacologia , Acetamidas/farmacologia , Agonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Aminopiridinas/farmacologia , Animais , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Purinas/farmacologia , Receptor A2B de Adenosina/genética , Transmissão Sináptica/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Xantinas/farmacologia
20.
Genes Dev ; 28(7): 683-8, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24696453

RESUMO

The Piwi-piRNA pathway represents a small RNA-based mechanism responsible for the recognition and silencing of invading DNA. Biogenesis of piRNAs (21U-RNAs) is poorly understood. In Caenorhabditis elegans, the piRNA-binding Argonaute protein PRG-1 is the only known player acting downstream from precursor transcription. From a screen aimed at the isolation of piRNA-induced silencing-defective (Pid) mutations, we identified, among known Piwi pathway components, PID-1 as a novel player. PID-1 is a mostly cytoplasmic, germline-specific factor essential for 21U-RNA biogenesis, affecting an early step in the processing or transport of 21U precursor transcripts. We also show that maternal 21U-RNAs are essential to initiate silencing.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , RNA Interferente Pequeno/biossíntese , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Metilação , Mutação , Precursores de Proteínas/metabolismo , Interferência de RNA/fisiologia , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA