Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(1): 108744, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38235338

RESUMO

In an innovative experiment, we detected ultraweak photon emission (UPE) from the hippocampus of male rat brains and found significant correlations between Alzheimer's disease (AD), memory decline, oxidative stress, and UPE intensity. These findings may open up novel methods for screening, detecting, diagnosing, and classifying neurodegenerative diseases, particularly AD. The study suggests that UPE from the brain's neural tissue can serve as a valuable indicator. It also proposes the development of a minimally invasive brain-computer interface (BCI) photonic chip for monitoring and diagnosing AD, offering high spatiotemporal resolution of brain activity. The study used a rodent model of sporadic AD, demonstrating that STZ-induced sAD resulted in increased hippocampal UPE, which was associated with oxidative stress. Treatment with donepezil reduced UPE and improved oxidative stress. These findings support the potential utility of UPE as a screening and diagnostic tool for AD and other neurodegenerative diseases.

2.
Neurosci Lett ; 816: 137474, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690497

RESUMO

Studying brain functions and activity during gamma oscillations can be a challenge because it requires careful planning to create the necessary conditions for a controlled experiment. Such an experiment consists of placing the brain into a gamma state and investigating cognitive processing with a careful design. Cortical oscillations in the gamma frequency range (30-80 Hz) play an essential role in a variety of cognitive processes, including visual processing and cognition. The present study aims to investigate the effects of a visual stimulus on the primary visual cortex under gamma oscillations. Specifically, we sought to explore the behavior of gamma oscillations triggered by optogenetic stimulation in the II and IV layers of the visual cortex, both with and without concurrent visual stimulation. Our results show that optogenetic stimulation increases the power of gamma oscillation in both layers of the visual cortex. However, the combined stimuli resulted in a reduction of gamma power in layer II and an increase and reinforcement in gamma power in layer IV. Modelling the results with the Wilson-Cowan model suggests changes in the input of the excitatory population due to the combined stimuli. In addition, our analysis of the data using the Lempel-Ziv complexity method supports our interpretations from the modeling. Thus, our results suggest that optogenetic stimulation enhances low gamma power in both layers of the visual cortex, while simultaneous visual stimulation has differing effects on the two layers, reducing gamma power in layer II and increasing it in layer IV.


Assuntos
Optogenética , Córtex Visual , Estimulação Luminosa/métodos , Optogenética/métodos , Percepção Visual/fisiologia , Encéfalo , Córtex Visual/fisiologia , Ritmo Gama/fisiologia
3.
J Biol Phys ; 49(4): 483-507, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656327

RESUMO

Synchronization is a widespread phenomenon in the brain. Despite numerous studies, the specific parameter configurations of the synaptic network structure and learning rules needed to achieve robust and enduring synchronization in neurons driven by spike-timing-dependent plasticity (STDP) and temporal networks subject to homeostatic structural plasticity (HSP) rules remain unclear. Here, we bridge this gap by determining the configurations required to achieve high and stable degrees of complete synchronization (CS) and phase synchronization (PS) in time-varying small-world and random neural networks driven by STDP and HSP. In particular, we found that decreasing P (which enhances the strengthening effect of STDP on the average synaptic weight) and increasing F (which speeds up the swapping rate of synapses between neurons) always lead to higher and more stable degrees of CS and PS in small-world and random networks, provided that the network parameters such as the synaptic time delay [Formula: see text], the average degree [Formula: see text], and the rewiring probability [Formula: see text] have some appropriate values. When [Formula: see text], [Formula: see text], and [Formula: see text] are not fixed at these appropriate values, the degree and stability of CS and PS may increase or decrease when F increases, depending on the network topology. It is also found that the time delay [Formula: see text] can induce intermittent CS and PS whose occurrence is independent F. Our results could have applications in designing neuromorphic circuits for optimal information processing and transmission via synchronization phenomena.


Assuntos
Redes Neurais de Computação , Plasticidade Neuronal , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Encéfalo/fisiologia , Modelos Neurológicos
4.
Expert Rev Neurother ; 23(9): 775-790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37551672

RESUMO

INTRODUCTION: Clinically, Alzheimer's disease (AD) is a syndrome with a spectrum of various cognitive disorders. There is a complete dissociation between the pathology and the clinical presentation. Therefore, we need a disruptive new approach to be able to prevent and treat AD. AREAS COVERED: In this review, the authors extensively discuss the evidence why the amyloid beta is not the pathological cause of AD which makes therefore the amyloid hypothesis not sustainable anymore. They review the experimental evidence underlying the role of microbes, especially that of viruses, as a trigger/cause for the production of amyloid beta leading to the establishment of a chronic neuroinflammation as the mediator manifesting decades later by AD as a clinical spectrum. In this context, the emergence and consequences of the infection/antimicrobial protection hypothesis are described. The epidemiological and clinical data supporting this hypothesis are also analyzed. EXPERT OPINION: For decades, we have known that viruses are involved in the pathogenesis of AD. This discovery was ignored and discarded for a long time. Now we should accept this fact, which is not a hypothesis anymore, and stimulate the research community to come up with new ideas, new treatments, and new concepts.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Vírus , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Vírus/metabolismo
5.
J R Soc Interface ; 19(196): 20220677, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36382589

RESUMO

In the brain, spiking patterns live in a high-dimensional space of neurons and time. Thus, determining the intrinsic structure of this space presents a theoretical and experimental challenge. To address this challenge, we introduce a new framework for applying topological data analysis (TDA) to spike train data and use it to determine the geometry of spiking patterns in the visual cortex. Key to our approach is a parametrized family of distances based on the timing of spikes that quantifies the dissimilarity between neuronal responses. We applied TDA to visually driven single-unit and multiple single-unit spiking activity in macaque V1 and V2. TDA across timescales reveals a common geometry for spiking patterns in V1 and V2 which, among simple models, is most similar to that of a low-dimensional space endowed with Euclidean or hyperbolic geometry with modest curvature. Remarkably, the inferred geometry depends on timescale and is clearest for the timescales that are important for encoding contrast, orientation and spatial correlations.


Assuntos
Ciência de Dados , Córtex Visual , Animais , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Macaca , Estimulação Luminosa/métodos
6.
J Alzheimers Dis Rep ; 6(1): 599-606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275414

RESUMO

Background: Unravelling the mystery of Alzheimer's disease (AD) requires urgent resolution given the worldwide increase of the aging population. There is a growing concern that the current leading AD hypothesis, the amyloid cascade hypothesis, does not stand up to validation with respect to emerging new data. Indeed, several paradoxes are being discussed in the literature, for instance, both the deposition of the amyloid-ß peptide (Aß) and the intracellular neurofibrillary tangles could occur within the brain without any cognitive pathology. Thus, these paradoxes suggest that something more fundamental is at play in the onset of the disease and other key and related pathomechanisms must be investigated. Objective: The present study follows our previous investigations on the infectious hypothesis, which posits that some pathogens are linked to late onset AD. Our studies also build upon the finding that Aß is a powerful antimicrobial agent, produced by neurons in response to viral infection, capable of inhibiting pathogens as observed in in vitro experiments. Herein, we ask what are the molecular mechanisms in play when Aß neutralizes infectious pathogens? Methods: To answer this question, we probed at nanoscale lengths with FRET (Förster Resonance Energy Transfer), the interaction between Aß peptides and glycoprotein B (responsible of virus-cell binding) within the HSV-1 virion. Results: The experiments show an energy transfer between Aß peptides and glycoprotein B when membrane is intact. No energy transfer occurs after membrane disruption or treatment with blocking antibody. Conclusion: We concluded that Aß insert into viral membrane, close to glycoprotein B, and participate in virus neutralization.

7.
Vaccines (Basel) ; 10(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35455356

RESUMO

Organismal ageing is associated with many physiological changes, including differences in the immune system of most animals. These differences are often considered to be a key cause of age-associated diseases as well as decreased vaccine responses in humans. The most often cited vaccine failure is seasonal influenza, but, while it is usually the case that the efficiency of this vaccine is lower in older than younger adults, this is not always true, and the reasons for the differential responses are manifold. Undoubtedly, changes in the innate and adaptive immune response with ageing are associated with failure to respond to the influenza vaccine, but the cause is unclear. Moreover, recent advances in vaccine formulations and adjuvants, as well as in our understanding of immune changes with ageing, have contributed to the development of vaccines, such as those against herpes zoster and SARS-CoV-2, that can protect against serious disease in older adults just as well as in younger people. In the present article, we discuss the reasons why it is a myth that vaccines inevitably protect less well in older individuals, and that vaccines represent one of the most powerful means to protect the health and ensure the quality of life of older adults.

8.
PLoS Comput Biol ; 18(2): e1009752, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35202391

RESUMO

Bursting is one of the fundamental rhythms that excitable cells can generate either in response to incoming stimuli or intrinsically. It has been a topic of intense research in computational biology for several decades. The classification of bursting oscillations in excitable systems has been the subject of active research since the early 1980s and is still ongoing. As a by-product, it establishes analytical and numerical foundations for studying complex temporal behaviors in multiple timescale models of cellular activity. In this review, we first present the seminal works of Rinzel and Izhikevich in classifying bursting patterns of excitable systems. We recall a complementary mathematical classification approach by Bertram and colleagues, and then by Golubitsky and colleagues, which, together with the Rinzel-Izhikevich proposals, provide the state-of-the-art foundations to these classifications. Beyond classical approaches, we review a recent bursting example that falls outside the previous classification systems. Generalizing this example leads us to propose an extended classification, which requires the analysis of both fast and slow subsystems of an underlying slow-fast model and allows the dissection of a larger class of bursters. Namely, we provide a general framework for bursting systems with both subthreshold and superthreshold oscillations. A new class of bursters with at least 2 slow variables is then added, which we denote folded-node bursters, to convey the idea that the bursts are initiated or annihilated via a folded-node singularity. Key to this mechanism are so-called canard or duck orbits, organizing the underpinning excitability structure. We describe the 2 main families of folded-node bursters, depending upon the phase (active/spiking or silent/nonspiking) of the bursting cycle during which folded-node dynamics occurs. We classify both families and give examples of minimal systems displaying these novel bursting patterns. Finally, we provide a biophysical example by reinterpreting a generic conductance-based episodic burster as a folded-node burster, showing that the associated framework can explain its subthreshold oscillations over a larger parameter region than the fast subsystem approach.


Assuntos
Biologia Computacional , Patos , Potenciais de Ação/fisiologia , Animais , Matemática
9.
Chaos ; 31(9): 093130, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34598472

RESUMO

Biological neural systems encode and transmit information as patterns of activity tracing complex trajectories in high-dimensional state spaces, inspiring alternative paradigms of information processing. Heteroclinic networks, naturally emerging in artificial neural systems, are networks of saddles in state space that provide a transparent approach to generate complex trajectories via controlled switches among interconnected saddles. External signals induce specific switching sequences, thus dynamically encoding inputs as trajectories. Recent works have focused either on computational aspects of heteroclinic networks, i.e., Heteroclinic Computing, or their stochastic properties under noise. Yet, how well such systems may transmit information remains an open question. Here, we investigate the information transmission properties of heteroclinic networks, studying them as communication channels. Choosing a tractable but representative system exhibiting a heteroclinic network, we investigate the mutual information rate (MIR) between input signals and the resulting sequences of states as the level of noise varies. Intriguingly, MIR does not decrease monotonically with increasing noise. Intermediate noise levels indeed maximize the information transmission capacity by promoting an increased yet controlled exploration of the underlying network of states. Complementing standard stochastic resonance, these results highlight the constructive effect of stochastic facilitation (i.e., noise-enhanced information transfer) on heteroclinic communication channels and possibly on more general dynamical systems exhibiting complex trajectories in state space.


Assuntos
Cognição , Vibração , Comunicação
10.
Immun Ageing ; 18(1): 29, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154615

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disease ultimately manifesting as clinical dementia. Despite considerable effort and ample experimental data, the role of neuroinflammation related to systemic inflammation is still unsettled. While the implication of microglia is well recognized, the exact contribution of peripheral monocytes/macrophages is still largely unknown, especially concerning their role in the various stages of AD. OBJECTIVES: AD develops over decades and its clinical manifestation is preceded by subjective memory complaints (SMC) and mild cognitive impairment (MCI); thus, the question arises how the peripheral innate immune response changes with the progression of the disease. Therefore, to further investigate the roles of monocytes/macrophages in the progression of AD we assessed their phenotypes and functions in patients at SMC, MCI and AD stages and compared them with cognitively healthy controls. We also conceptualised an idealised mathematical model to explain the functionality of monocytes/macrophages along the progression of the disease. RESULTS: We show that there are distinct phenotypic and functional changes in monocyte and macrophage populations as the disease progresses. Higher free radical production upon stimulation could already be observed for the monocytes of SMC patients. The most striking results show that activation of peripheral monocytes (hyperactivation) is the strongest in the MCI group, at the prodromal stage of the disease. Monocytes exhibit significantly increased chemotaxis, free radical production, and cytokine production in response to TLR2 and TLR4 stimulation. CONCLUSION: Our data suggest that the peripheral innate immune system is activated during the progression from SMC through MCI to AD, with the highest levels of activation being in MCI subjects and the lowest in AD patients. Some of these parameters may be used as biomarkers, but more holistic immune studies are needed to find the best period of the disease for clinical intervention.

11.
Neuropsychiatr Dis Treat ; 17: 1311-1339, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976546

RESUMO

Alzheimer's disease (AD) is the most common form of dementia and aging is the most common risk factor for developing the disease. The etiology of AD is not known but AD may be considered as a clinical syndrome with multiple causal pathways contributing to it. The amyloid cascade hypothesis, claiming that excess production or reduced clearance of amyloid-beta (Aß) and its aggregation into amyloid plaques, was accepted for a long time as the main cause of AD. However, many studies showed that Aß is a frequent consequence of many challenges/pathologic processes occurring in the brain for decades. A key factor, sustained by experimental data, is that low-grade infection leading to production and deposition of Aß, which has antimicrobial activity, precedes the development of clinically apparent AD. This infection is chronic, low grade, largely clinically silent for decades because of a nearly efficient antimicrobial immune response in the brain. A chronic inflammatory state is induced that results in neurodegeneration. Interventions that appear to prevent, retard or mitigate the development of AD also appear to modify the disease. In this review, we conceptualize further that the changes in the brain antimicrobial immune response during aging and especially in AD sufferers serve as a foundation that could lead to improved treatment strategies for preventing or decreasing the progression of AD in a disease-modifying treatment.

12.
Front Neurosci ; 15: 780344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069099

RESUMO

The present paper examines the viability of a radically novel idea for brain-computer interface (BCI), which could lead to novel technological, experimental, and clinical applications. BCIs are computer-based systems that enable either one-way or two-way communication between a living brain and an external machine. BCIs read-out brain signals and transduce them into task commands, which are performed by a machine. In closed loop, the machine can stimulate the brain with appropriate signals. In recent years, it has been shown that there is some ultraweak light emission from neurons within or close to the visible and near-infrared parts of the optical spectrum. Such ultraweak photon emission (UPE) reflects the cellular (and body) oxidative status, and compelling pieces of evidence are beginning to emerge that UPE may well play an informational role in neuronal functions. In fact, several experiments point to a direct correlation between UPE intensity and neural activity, oxidative reactions, EEG activity, cerebral blood flow, cerebral energy metabolism, and release of glutamate. Therefore, we propose a novel skull implant BCI that uses UPE. We suggest that a photonic integrated chip installed on the interior surface of the skull may enable a new form of extraction of the relevant features from the UPE signals. In the current technology landscape, photonic technologies are advancing rapidly and poised to overtake many electrical technologies, due to their unique advantages, such as miniaturization, high speed, low thermal effects, and large integration capacity that allow for high yield, volume manufacturing, and lower cost. For our proposed BCI, we are making some very major conjectures, which need to be experimentally verified, and therefore we discuss the controversial parts, feasibility of technology and limitations, and potential impact of this envisaged technology if successfully implemented in the future.

13.
Mech Ageing Dev ; 192: 111390, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33127442

RESUMO

Living systems are subject to the arrow of time; from birth, they undergo complex transformations (self-organization) in a constant battle for survival, but inevitably ageing and disease trap them to death. Can ageing be understood and eventually reversed? What tools can be employed to further our understanding of ageing? The present article is an invitation for biologists and clinicians to consider key conceptual ideas and computational tools (known to mathematicians and physicists), which potentially may help dissect some of the underlying processes of ageing and disease. Specifically, we first discuss how to classify and analyse complex systems, as well as highlight critical theoretical difficulties that make complex systems hard to study. Subsequently, we introduce Topological Data Analysis - a novel Big Data tool - which may help in the study of complex systems since it extracts knowledge from data in a holistic approach via topological considerations. These conceptual ideas and tools are discussed in a relatively informal way to pave future discussions and collaborations between mathematicians and biologists studying ageing.


Assuntos
Envelhecimento , Biologia do Desenvolvimento , Saúde Holística , Longevidade , Big Data , Metodologias Computacionais , Análise de Dados , Biologia do Desenvolvimento/métodos , Biologia do Desenvolvimento/tendências , Humanos , Modelos Teóricos
14.
CNS Drugs ; 34(7): 673-695, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32458360

RESUMO

Alzheimer's disease (AD) is the most prevalent dementia in the world. Its cause(s) are presently largely unknown. The most common explanation for AD, now, is the amyloid cascade hypothesis, which states that the cause of AD is senile plaque formation by the amyloid ß peptide, and the formation of neurofibrillary tangles by hyperphosphorylated tau. A second, burgeoning theory by which to explain AD is based on the infection hypothesis. Much experimental and epidemiological data support the involvement of infections in the development of dementia. According to this mechanism, the infection either directly or via microbial virulence factors precedes the formation of amyloid ß plaques. The amyloid ß peptide, possessing antimicrobial properties, may be beneficial at an early stage of AD, but becomes detrimental with the progression of the disease, concomitantly with alterations to the innate immune system at both the peripheral and central levels. Infection results in neuroinflammation, leading to, and sustained by, systemic inflammation, causing eventual neurodegeneration, and the senescence of the immune cells. The sources of AD-involved microbes are various body microbiome communities from the gut, mouth, nose, and skin. The infection hypothesis of AD opens a vista to new therapeutic approaches, either by treating the infection itself or modulating the immune system, its senescence, or the body's metabolism, either separately, in parallel, or in a multi-step way.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Infecciosos/uso terapêutico , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Placa Amiloide/tratamento farmacológico , Placa Amiloide/metabolismo
15.
Front Comput Neurosci ; 13: 62, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551744

RESUMO

Metastability refers to the fact that the state of a dynamical system spends a large amount of time in a restricted region of its available phase space before a transition takes place, bringing the system into another state from where it might recur into the previous one. beim Graben and Hutt (2013) suggested to use the recurrence plot (RP) technique introduced by Eckmann et al. (1987) for the segmentation of system's trajectories into metastable states using recurrence grammars. Here, we apply this recurrence structure analysis (RSA) for the first time to resting-state brain dynamics obtained from functional magnetic resonance imaging (fMRI). Brain regions are defined according to the brain hierarchical atlas (BHA) developed by Diez et al. (2015), and as a consequence, regions present high-connectivity in both structure (obtained from diffusion tensor imaging) and function (from the blood-level dependent-oxygenation-BOLD-signal). Remarkably, regions observed by Diez et al. were completely time-invariant. Here, in order to compare this static picture with the metastable systems dynamics obtained from the RSA segmentation, we determine the number of metastable states as a measure of complexity for all subjects and for region numbers varying from 3 to 100. We find RSA convergence toward an optimal segmentation of 40 metastable states for normalized BOLD signals, averaged over BHA modules. Next, we build a bistable dynamics at population level by pooling 30 subjects after Hausdorff clustering. In link with this finding, we reflect on the different modeling frameworks that can allow for such scenarios: heteroclinic dynamics, dynamics with riddled basins of attraction, multiple-timescale dynamics. Finally, we characterize the metastable states both functionally and structurally, using templates for resting state networks (RSNs) and the automated anatomical labeling (AAL) atlas, respectively.

16.
Bull Math Biol ; 81(10): 4124-4143, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31313084

RESUMO

The conductance-based refractory density (CBRD) approach is a parsimonious mathematical-computational framework for modelling interacting populations of regular spiking neurons, which, however, has not been yet extended for a population of bursting neurons. The canonical CBRD method allows to describe the firing activity of a statistical ensemble of uncoupled Hodgkin-Huxley-like neurons (differentiated by noise) and has demonstrated its validity against experimental data. The present manuscript generalises the CBRD for a population of bursting neurons; however, in this pilot computational study, we consider the simplest setting in which each individual neuron is governed by a piecewise linear bursting dynamics. The resulting population model makes use of slow-fast analysis, which leads to a novel methodology that combines CBRD with the theory of multiple timescale dynamics. The main prospect is that it opens novel avenues for mathematical explorations, as well as, the derivation of more sophisticated population activity from Hodgkin-Huxley-like bursting neurons, which will allow to capture the activity of synchronised bursting activity in hyper-excitable brain states (e.g. onset of epilepsy).


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Animais , Fenômenos Biofísicos , Encéfalo/citologia , Encéfalo/fisiologia , Contagem de Células , Simulação por Computador , Fenômenos Eletrofisiológicos , Epilepsia/patologia , Epilepsia/fisiopatologia , Humanos , Modelos Lineares , Conceitos Matemáticos , Potássio/metabolismo , Análise Espaço-Temporal
17.
Chaos ; 29(1): 013111, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709107

RESUMO

Neurons can anticipate incoming signals by exploiting a physiological mechanism that is not well understood. This article offers a novel explanation on how a receiver neuron can predict the sender's dynamics in a unidirectionally-coupled configuration, in which both sender and receiver follow the evolution of a multi-scale excitable system. We present a novel theoretical viewpoint based on a mathematical object, called canard, to explain anticipation in excitable systems. We provide a numerical approach, which allows to determine the transient effects of canards. To demonstrate the general validity of canard-mediated anticipation in the context of excitable systems, we illustrate our framework in two examples, a multi-scale radio-wave circuit (the van der Pol model) that inspired a caricature neuronal model (the FitzHugh-Nagumo model) and a biophysical neuronal model (a 2-dimensional reduction of the Hodgkin-Huxley model), where canards act as messengers to the senders' prediction. We also propose an experimental paradigm that would enable experimental neuroscientists to validate our predictions. We conclude with an outlook to possible fascinating research avenues to further unfold the mechanisms underpinning anticipation. We envisage that our approach can be employed by a wider class of excitable systems with appropriate theoretical extensions.


Assuntos
Neurônios/fisiologia , Potenciais de Ação , Simulação por Computador , Eletrofisiologia , Humanos , Modelos Neurológicos , Fenômenos Fisiológicos do Sistema Nervoso
18.
Neural Netw ; 85: 85-105, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27814468

RESUMO

Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments.


Assuntos
Algoritmos , Redes Neurais de Computação , Software
19.
Proc Natl Acad Sci U S A ; 113(8): E1108-15, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858411

RESUMO

Communication between neurons at chemical synapses is regulated by hundreds of different proteins that control the release of neurotransmitter that is packaged in vesicles, transported to an active zone, and released when an input spike occurs. Neurotransmitter can also be released asynchronously, that is, after a delay following the spike, or spontaneously in the absence of a stimulus. The mechanisms underlying asynchronous and spontaneous neurotransmitter release remain elusive. Here, we describe a model of the exocytotic cycle of vesicles at excitatory and inhibitory synapses that accounts for all modes of vesicle release as well as short-term synaptic plasticity (STSP). For asynchronous release, the model predicts a delayed inertial protein unbinding associated with the SNARE complex assembly immediately after vesicle priming. Experiments are proposed to test the model's molecular predictions for differential exocytosis. The simplicity of the model will also facilitate large-scale simulations of neural circuits.


Assuntos
Exocitose/fisiologia , Condução Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Neurotransmissores/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Ratos
20.
Artigo em Inglês | MEDLINE | ID: mdl-26764724

RESUMO

The relationship between the extracellularly measured electric field potential resulting from synaptic activity in an ensemble of neurons and intracellular signals in these neurons is an important but still open question. Based on a model neuron with a cylindrical dendrite and lumped soma, we derive a formula that substantiates a proportionality between the local field potential and the total somatic transmembrane current that emerges from the difference between the somatic and dendritic membrane potentials. The formula is tested by intra- and extracellular recordings of evoked synaptic responses in hippocampal slices. Additionally, the contribution of different membrane currents to the field potential is demonstrated in a two-population mean-field model. Our formalism, which allows for a simple estimation of unknown dendritic currents directly from somatic measurements, provides an interpretation of the local field potential in terms of intracellularly measurable synaptic signals. It is also applicable to the study of cortical activity using two-compartment neuronal population models.


Assuntos
Fenômenos Eletrofisiológicos , Espaço Intracelular/metabolismo , Modelos Neurológicos , Neurônios/citologia , Dendritos/metabolismo , Potenciais da Membrana , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA