Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Vet Microbiol ; 252: 108928, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33248402

RESUMO

Binary ethylenimine (BEI) has been widely used as a virucide to inactivate viruses. For regulatory exclusion of a select agent, the United States Federal Select Agent Program (FSAP) requires an inactivation procedure that renders a select agent non-viable but allows the select agent to retain antigenic characteristics for future use must be validated, and the inactivated agent must be confirmed by a viability testing. In this curve-based validation study, we examined impacts of BEI concentration, treatment temperature, and time on our in-house inactivation procedures of Foot-and-Mouth Disease Virus (FMDV), Vesicular Stomatitis Virus (VSV), and Swine Vesicular Disease Virus (SVDV). The inactivation efficacy was confirmed by virus titration and 3 consecutive blind passages on the monolayers of susceptible cells. A linear correlation between the virus titer reduction and BEI concentration, treatment time, and temperature was established. The results confirmed our in-house BEI inactivation procedure of two doses of 1.5 mM BEI treatment at 37 °C, 1st dose for 24 h, then 2nd dose for 6 more hours for a total of 30 h BEI contact time, can ensure complete inactivation of FMDV, VSV, and SVDV.


Assuntos
Aziridinas/farmacologia , Enterovirus Humano B/efeitos dos fármacos , Vírus da Febre Aftosa/efeitos dos fármacos , Febre Aftosa/prevenção & controle , Doenças dos Suínos/prevenção & controle , Estomatite Vesicular/prevenção & controle , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Animais , Contenção de Riscos Biológicos/veterinária , Suínos , Doenças dos Suínos/virologia , Estomatite Vesicular/virologia , Inativação de Vírus/efeitos dos fármacos
2.
Transbound Emerg Dis ; 67(5): 1942-1953, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32145150

RESUMO

African swine fever (ASF) is one of the most complex and lethally haemorrhagic viral diseases of swine, affecting all breeds and ages of pigs. In the absence of ASF vaccines, reliable laboratory diagnosis and restricted biosecurity are critical for disease prevention and control. A detection of ASF-specific antibodies in an unvaccinated pig is a good marker for the diagnosis of ASF. The immunoperoxidase test (IPT) is a sensitive test for detecting ASF virus (ASFV) antibodies. However, due to the complexity of the procedure, the IPT is only suitable to be used as a confirmatory test. The ASFV p30 protein-based enzyme-linked immunosorbent assay (ELISA) is widely used for ASFV antibody screening, but the sensitivity is not comparable to the IPT. It is essential to have a better understanding of the antigenic properties of ASFV p30 to improve p30-based serologic tests. In this study, we developed a panel of 21 monoclonal antibodies (mAbs) against ASFV p30. With 14 out of the 21 mAbs, we defined 4 antigenic regions that contain at least 4 linear epitopes. Nine of the 14 mAbs mapped to antigenic regions 3 and 4 reacted with p30 in all serologic methods tested in this study, such as indirect immunofluorescence assay (IFA), ELISA and Western blot. The antigenic regions 3 and 4 are highly conserved and immunodominant in host antibody response. These mAbs and the defined p30 antigenic regions 3 and 4 provide valuable tools for the development and improvement of ASF serologic assays.

3.
Vaccine ; 37(26): 3435-3442, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31085001

RESUMO

Foot and Mouth Disease is a highly contagious and economically important disease of livestock. While vaccination is often effective at controlling viral spread, failures can occur due to strain mismatch or viral mutation. Foot and Mouth Disease Virus (FMDV) possesses a hypervariable region within the G-H Loop of VP1, a capsid protein commonly associated with virus neutralization. Here, we investigate the effect of replacement of the G-H loop hypervariable epitope with a xenoepitope from PRRS virus on the immunogenicity and efficacy of an adenovirus vectored FMDV vaccine (Ad5-FMD). Pigs were vaccinated with Ad5-FMD, the modified Ad5-FMDxeno, or PBS, followed by intradermal challenge with FDMV strain O1 Manisa at 21 days post-vaccination. While overall serum antibody titers were significantly higher in Ad5-FMDxeno vaccinated animals, neutralizing antibody titers were decreased in pigs that received Ad5-FMDxeno, when compared to those vaccinated with Ad5-FMD, prior to viral challenge, indicative of immune redirection away from VP1 towards non-neutralizing epitopes. As expected, animals vaccinated with unmodified Ad5-FMD were protected from lesions, fever, and viremia. In contrast, animals vaccinated with Ad5-FMDxeno developed clinical signs and viremia, but at lower levels than that observed in PBS-treated controls. No significant difference was found in nasal shedding of virions between the two Ad5-FMD vaccinated groups. This data suggests that the hypervariable epitope of the VP1 G-H loop contributes to protective immunity conferred by Ad5 vector-delivered FMD vaccines in swine, and cannot be substituted without a loss of immunogenicity.


Assuntos
Proteínas do Capsídeo/imunologia , Epitopos/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Suínos/imunologia , Adenoviridae/imunologia , Infecções por Adenoviridae/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Vetores Genéticos/imunologia , Células HEK293 , Humanos , Imunização/métodos , Vacinação/métodos , Vacinas Virais/imunologia
4.
Virol J ; 13: 88, 2016 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-27260412

RESUMO

BACKGROUND: Diagnostics and research of high-consequence animal disease agents is often limited to laboratories with a high level of biosecurity that restrict the transport of biological material. Often, sharing of DNA with external partners is needed to support diagnostics, forensics, or research. Even in the absence of virus, RNA from positive-sense single stranded RNA (+ssRNA) viruses that may contaminate otherwise purified DNA preparations continues to pose a threat due to its potential to be infectious via direct translation to yield viral proteins. While the risk of animal infection or accidental reconstitution and release of a virus from RNA is very low, the high impact of an animal disease event associated with the accidental release of some + ssRNA viruses, such as classical swine fever or foot-and-mouth disease viruses, necessitates the precaution of having procedures to ensure the complete inactivation of viruses and + ssRNA viral genomes. RNA and DNA are differentially susceptible to enzymatic degradations; however, such procedures are susceptible to unintended DNA damage and/or failure due to enzyme or cofactor instabilities. Therefore, we describe the development and verification of a robust and simple chemical and physical method to selectively degrade RNA from purified DNA preparations. The procedure employs incubation of DNA in 0.25 N sodium hydroxide at 65 °C for 1 h followed by neutralization and boiling for 10 min to hydrolyze contaminating RNA and inactivate animal disease viruses from DNA preparations. Additional critical quality control elements include use of a synthetic control RNA (SCR) and an SCR-specific real-time RT-PCR to track effectiveness of the procedure in a parallel treated control sample, and a pH check of reagents to ensure proper neutralization of alkaline conditions. RESULTS: The new procedure reduced intact RNA beyond the limit of detection by realtime RT-PCR and inactivated viruses by in vitro culture infectivity assays. CONCLUSIONS: Treated DNA, while denatured, remains suitable for most common molecular biology procedures including PCR, transformation of E. coli, and molecular sequencing. The procedure ensures not only the inactivation of a variety of viruses but also the degradation through hydrolysis of potentially contaminating infectious + ssRNA viral genomes.


Assuntos
DNA/isolamento & purificação , Desinfetantes/farmacologia , Hidrólise , RNA Viral/efeitos dos fármacos , Hidróxido de Sódio/farmacologia , Inativação de Vírus , Animais , Temperatura Alta , Concentração de Íons de Hidrogênio , Fatores de Tempo
5.
Environ Health Perspect ; 113(6): 775-81, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15929903

RESUMO

We report the results of a screen for genetic association with urinary arsenic metabolite levels in three arsenic metabolism candidate genes, PNP, GSTO, and CYT19, in 135 arsenic-exposed subjects from the Yaqui Valley in Sonora, Mexico, who were exposed to drinking water concentrations ranging from 5.5 to 43.3 ppb. We chose 23 polymorphic sites to test in the arsenic-exposed population. Initial phenotypes evaluated included the ratio of urinary inorganic arsenic(III) to inorganic arsenic(V) and the ratio of urinary dimethylarsenic(V) to monomethylarsenic(V) (D:M). In the initial association screening, three polymorphic sites in the CYT19 gene were significantly associated with D:M ratios in the total population. Subsequent analysis of this association revealed that the association signal for the entire population was actually caused by an extremely strong association in only the children (7-11 years of age) between CYT19 genotype and D:M levels. With children removed from the analysis, no significant genetic association was observed in adults (18-79 years). The existence of a strong, developmentally regulated genetic association between CYT19 and arsenic metabolism carries import for both arsenic pharmacogenetics and arsenic toxicology, as well as for public health and governmental regulatory officials.


Assuntos
Arsênio/metabolismo , Arsenicais/urina , Glutationa Transferase/genética , Metiltransferases/genética , Polimorfismo Genético , Purina-Núcleosídeo Fosforilase/genética , Poluentes Químicos da Água/metabolismo , Adolescente , Adulto , Idoso , Arsênio/urina , Criança , Monitoramento Ambiental , Feminino , Genótipo , Humanos , Masculino , Metilação , México , Pessoa de Meia-Idade , Dados de Sequência Molecular , Poluentes Químicos da Água/urina , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA