Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890735

RESUMO

The combination of microfluidics and photo-polymerization techniques such as stereolithography (SLA) has emerged as a new field which has a lot of potential to influence in such important areas as biological analysis, and chemical detection among others. However, the integration between them is still at an early stage of development. In this article, after analyzing the resolution of a custom SLA 3D printer with commercial resins, microfluidic devices were manufactured using three different approaches. First, printing a mold with the objective of creating a Polydimethylsiloxane (PDMS) replica with the microfluidic channels; secondly, open channels have been printed and then assembled with a flat cover of the same resin material. Finally, a closed microfluidic device has also been produced in a single process of printing. Important results for 3D printing with commercial resins have been achieved by only printing one layer on top of the channel. All microfluidic devices have been tested successfully for pressure-driven fluid flow.

2.
Adv Exp Med Biol ; 1379: 389-412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35761001

RESUMO

Nowadays, liquid biopsy represents one of the most promising techniques for early diagnosis, monitoring, and therapy screening of cancer. This novel methodology includes, among other techniques, the isolation, capture, and analysis of circulating tumor cells (CTCs). Nonetheless, the identification of CTC from whole blood is challenging due to their extremely low concentration (1-100 per ml of whole blood), and traditional methods result insufficient in terms of purity, recovery, throughput and/or viability of the processed sample. In this context, the development of microfluidic devices for detecting and isolating CTCs offers a wide range of new opportunities due to their excellent properties for cell manipulation and the advantages to integrate and bring different laboratory processes into the microscale improving the sensitivity, portability, reducing cost and time. This chapter explores current and recent microfluidic approaches that have been developed for the analysis and detection of CTCs, which involve cell capture methods based on affinity binding and label-free methods and detection based on electrical, chemical, and optical sensors. All the exposed technologies seek to overcome the limitations of commercial systems for the analysis and isolation of CTCs, as well as to provide extended analysis that will allow the development of novel and more efficient diagnostic tools.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Contagem de Células , Linhagem Celular Tumoral , Separação Celular/métodos , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica , Células Neoplásicas Circulantes/patologia
3.
Biofabrication ; 13(3)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33962409

RESUMO

The creation of cardiac tissue models for preclinical testing is still a non-solved problem in drug discovery, due to the limitations related to thein vitroreplication of cardiac tissue complexity. Among these limitations, the difficulty of mimicking the functional properties of the myocardium due to the immaturity of the used cells hampers the obtention of reliable results that could be translated into human patients.In vivomodels are the current gold standard to test new treatments, although it is widely acknowledged that the used animals are unable to fully recapitulate human physiology, which often leads to failures during clinical trials. In the present work, we present a microfluidic platform that aims to provide a range of signaling cues to immature cardiac cells to drive them towards an adult phenotype. The device combines topographical electrospun nanofibers with electrical stimulation in a microfabricated system. We validated our platform using a co-culture of neonatal mouse cardiomyocytes and cardiac fibroblasts, showing that it allows us to control the degree of anisotropy of the cardiac tissue inside the microdevice in a cost-effective way. Moreover, a 3D computational model of the electrical field was created and validated to demonstrate that our platform is able to closely match the distribution obtained with the gold standard (planar electrode technology) using inexpensive rod-shaped biocompatible stainless-steel electrodes. The functionality of the electrical stimulation was shown to induce a higher expression of the tight junction protein Cx-43, as well as the upregulation of several key genes involved in conductive and structural cardiac properties. These results validate our platform as a powerful tool for the tissue engineering community due to its low cost, high imaging compatibility, versatility, and high-throughput configuration capabilities.


Assuntos
Estimulação Elétrica , Animais , Anisotropia , Humanos , Camundongos , Miócitos Cardíacos , Nanofibras , Engenharia Tecidual
4.
ACS Appl Bio Mater ; 4(1): 669-681, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33490884

RESUMO

The performance of supramolecular nanocarriers as drug delivery systems depends on their stability in the complex and dynamic biological media. After administration, nanocarriers are challenged by physiological barriers such as shear stress and proteins present in blood, endothelial wall, extracellular matrix, and eventually cancer cell membrane. While early disassembly will result in a premature drug release, extreme stability of the nanocarriers can lead to poor drug release and low efficiency. Therefore, comprehensive understanding of the stability and assembly state of supramolecular carriers in each stage of delivery is the key factor for the rational design of these systems. One of the main challenges is that current 2D in vitro models do not provide exhaustive information, as they fail to recapitulate the 3D tumor microenvironment. This deficiency in the 2D model complexity is the main reason for the differences observed in vivo when testing the performance of supramolecular nanocarriers. Herein, we present a real-time monitoring study of self-assembled micelles stability and extravasation, combining spectral confocal microscopy and a microfluidic cancer-on-a-chip. The combination of advanced imaging and a reliable 3D model allows tracking of micelle disassembly by following the spectral properties of the amphiphiles in space and time during the crucial steps of drug delivery. The spectrally active micelles were introduced under flow and their position and conformation continuously followed by spectral imaging during the crossing of barriers, revealing the interplay between carrier structure, micellar stability, and extravasation. Integrating the ability of the micelles to change their fluorescent properties when disassembled, spectral confocal imaging and 3D microfluidic tumor blood vessel-on-a-chip resulted in the establishment of a robust testing platform suitable for real-time imaging and evaluation of supramolecular drug delivery carrier's stability.


Assuntos
Micelas , Microfluídica/métodos , Antracenos/química , Técnicas de Cultura de Células em Três Dimensões , Portadores de Fármacos/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Microscopia Confocal , Modelos Biológicos , Nanopartículas/química , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Polietilenoglicóis/química , Polímeros/química , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
5.
Sensors (Basel) ; 20(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121271

RESUMO

Cancer represents one of the conditions with the most causes of death worldwide. Common methods for its diagnosis are based on tissue biopsies-the extraction of tissue from the primary tumor, which is used for its histological analysis. However, this technique represents a risk for the patient, along with being expensive and time-consuming and so it cannot be frequently used to follow the progress of the disease. Liquid biopsy is a new cancer diagnostic alternative, which allows the analysis of the molecular information of the solid tumors via a body fluid draw. This fluid-based diagnostic method displays relevant advantages, including its minimal invasiveness, lower risk, use as often as required, it can be analyzed with the use of microfluidic-based platforms with low consumption of reagent, and it does not require specialized personnel and expensive equipment for the diagnosis. In recent years, the integration of sensors in microfluidics lab-on-a-chip devices was performed for liquid biopsies applications, granting significant advantages in the separation and detection of circulating tumor nucleic acids (ctNAs), circulating tumor cells (CTCs) and exosomes. The improvements in isolation and detection technologies offer increasingly sensitive and selective equipment's, and the integration in microfluidic devices provides a better characterization and analysis of these biomarkers. These fully integrated systems will facilitate the generation of fully automatized platforms at low-cost for compact cancer diagnosis systems at an early stage and for the prediction and prognosis of cancer treatment through the biomarkers for personalized tumor analysis.


Assuntos
Detecção Precoce de Câncer/métodos , Biópsia Líquida/métodos , Microfluídica/métodos , Biomarcadores Tumorais/sangue , Ácidos Nucleicos Livres/sangue , Exossomos/patologia , Humanos , Dispositivos Lab-On-A-Chip , Células Neoplásicas Circulantes/patologia
6.
Micromachines (Basel) ; 11(1)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31940964

RESUMO

A coaxial flow focusing PDMS (polydimethylsiloxane) microfluidic device has been designed and manufactured by soft lithography in order to experimentally study a miscible inner flow. We studied a coaxially focused inner flow (formed by an aqueous fluorescein solution) which was fully isolated from all microchannel surfaces by an additional water outer flow. Different flow rates were used to produce a variety of flow ratios and a 3D reconstruction of the cross-section was performed using confocal microscope images. The results showed an elliptical section of the coaxially focused inner flow that changes in shape depending on the flow rate ratio applied. We have also developed a mathematical model that allows us to predict and control the geometry of the coaxially focused inner flow.

7.
Sensors (Basel) ; 18(10)2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30336557

RESUMO

Monitoring of bacteria concentrations is of great importance in drinking water management. Continuous real-time monitoring enables better microbiological control of the water and helps prevent contaminated water from reaching the households. We have developed a microfluidic sensor with the potential to accurately assess bacteria levels in drinking water in real-time. Multi frequency electrical impedance spectroscopy is used to monitor a liquid sample, while it is continuously passed through the sensor. We investigate three aspects of this sensor: First we show that the sensor is able to differentiate Escherichia coli (Gram-negative) bacteria from solid particles (polystyrene beads) based on an electrical response in the high frequency phase and individually enumerate the two samples. Next, we demonstrate the sensor's ability to measure the bacteria concentration by comparing the results to those obtained by the traditional CFU counting method. Last, we show the sensor's potential to distinguish between different bacteria types by detecting different signatures for S. aureus and E. coli mixed in the same sample. Our investigations show that the sensor has the potential to be extremely effective at detecting sudden bacterial contaminations found in drinking water, and eventually also identify them.


Assuntos
Técnicas Bacteriológicas/métodos , Água Potável/microbiologia , Citometria de Fluxo/métodos , Técnicas Bacteriológicas/instrumentação , Impedância Elétrica , Desenho de Equipamento , Escherichia coli , Citometria de Fluxo/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Staphylococcus aureus , Microbiologia da Água
8.
J Vis Exp ; (125)2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28715375

RESUMO

Covalent Organic Frameworks (COFs) are a class of porous covalent materials which are frequently synthesized as unprocessable crystalline powders. The first COF was reported in 2005 with much effort centered on the establishment of new synthetic routes for its preparation. To date, most available synthetic methods for COF synthesis are based on bulk mixing under solvothermal conditions. Therefore, there is increasing interest in developing systematic protocols for COF synthesis that provide for fine control over reaction conditions and improve COF processability on surfaces, which is essential for their use in practical applications. Herein, we present a novel microfluidic-based method for COF synthesis where the reaction between two constituent building blocks, 1,3,5-benzenetricarbaldehyde (BTCA) and 1,3,5-tris(4-aminophenyl)benzene (TAPB), takes place under controlled diffusion conditions and at room temperature. Using such an approach yields sponge-like, crystalline fibers of a COF material, hereafter called MF-COF. The mechanical properties of MF-COF and the dynamic nature of the approach allow the continuous production of MF-COF fibers and their direct printing onto surfaces. The general method opens new potential applications requiring advanced printing of 2D or 3D COF structures on flexible or rigid surfaces.


Assuntos
Estruturas Metalorgânicas/química , Microfluídica/métodos , Compostos Orgânicos/química , Propriedades de Superfície
9.
ACS Omega ; 2(12): 8849-8858, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023593

RESUMO

It is shown here that controlled mixing of a gelator, drug, solvent, and antisolvent in a microfluidic channel leads to faster setting gels and more robust materials with longer release profiles than the physical gels of the same composition obtained using random mixing in solution. The system is similar to a related gelator system we had studied previously, but we were unable to apply the same gelling procedure because of the instability of the colloid caused by the small structural modification (length of the alkyl chain in the bis-imidazolium head group). This situation holds true for the gels formed with varying compositions and under different conditions (gelator/drug ratio, solvent proportion, and flow rates), with the most significant differences being the improved gel rheology and slower drug release rates. Very importantly, the gels (based on a previously unexplored system) have a higher water content ratio (water/EtOH 4:1) than others in the family, making their medicinal application more attractive. The gels were characterized by a variety of microscopy techniques, X-ray diffraction and infrared spectroscopy, and rheology. Salts of the antiinflammatory drugs ibuprofen and indomethacin were successfully incorporated into the gels. The diffraction experiments indicate that these composite gels with relatively short alkyl chains in the gelator component contrast to previous systems, in that they exhibit structural order and the presence of crystalline areas of the drug molecule implying partial phase separation (even though these drug crystallites are not discernible by microscopy). Furthermore, the release study with the gel incorporating ibuprofenate showed promising results that indicate a possible drug delivery vehicle application for this and related systems.

10.
J Vis Exp ; (113)2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27500740

RESUMO

The precise localization and controlled chemical treatment of structures on a surface are significant challenges for common laboratory technologies. Herein, we introduce a microfluidic-based technology, employing a double-layer microfluidic device, which can trap and localize in situ and ex situ synthesized structures on microfluidic channel surfaces. Crucially, we show how such a device can be used to conduct controlled chemical reactions onto on-chip trapped structures and we demonstrate how the synthetic pathway of a crystalline molecular material and its positioning inside a microfluidic channel can be precisely modified with this technology. This approach provides new opportunities for the controlled assembly of structures on surface and for their subsequent treatment.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica/instrumentação
11.
Chem Commun (Camb) ; 52(59): 9212-5, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27321768

RESUMO

A microfluidic chip has been used to prepare fibres of a porous polymer with high structural order, setting a precedent for the generation of a wide variety of materials using this reagent mixing approach that provides unique materials not accessible easily through bulk processes. The reaction between 1,3,5-tris(4-aminophenyl)benzene and 1,3,5-benzenetricarbaldehyde in acetic acid under continuous microfluidic flow conditions leads to the formation of a highly crystalline and porous covalent organic framework (hereafter denoted as MF-COF-1), consisting of fibrillar micro-structures, which have mechanical stability that allows for direct drawing of objects on a surface.

12.
J Am Chem Soc ; 138(22): 6920-3, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27203551

RESUMO

The effect of diffusion-controlled microfluidic conditions in the very initial stages of a far-from-equilibrium self-assembly process on the evolution of aggregate chirality in a multicomponent supramolecular system is shown.

13.
Chem Sci ; 6(6): 3471-3477, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28706708

RESUMO

The chemical modification of an immobilized single crystal in a fluid cell is reported, whereby a material with switching functions is generated in situ by generating a chemical reagent in the flow. Crystals of the insulating organic crystal of TCNQ (tetracyanoquinodimethane) were grown in a microfluidic channel and were trapped using a pneumatic valve, a nascent technique for materials manipulation. They were subsequently reduced using solution-deposited silver to provide a conducting material in situ by a heterogeneous reaction. Removal of the new material from the chip proved it to be the silver salt of reduced TCNQ. Uniquely, conducting atomic force microscope (CAFM) studies show three regions in the solid. The localized original neutral organic material crystal is shown to be an insulator but to produce areas with Ohmic conducting characteristics after reduction. This inhomogeneous doping provides an opportunity for probing electrical materials properties side by side. Measurements with the CAFM witness this conducting material where the TCNQ is fully transformed to the silver salt. Additionally, an intermediate phase is observed that exhibits bipolar resistive switching typical of programmable resistive memories. Raman microscopy proves the conversion of the material in specific regions and clearly defines the intermediate phase region that could be responsible for the switching effect in related materials. This kind of "on crystal chemistry" exploiting immobilization and masking by a pneumatic clamp in a microfluidic channel shows how material can be selectively converted to give different functionalities in the same material piece, even though it is not a single crystal to single crystal conversion, and beckons exploitation for the preparation of systems relevant for molecular electronics as well as other areas where chemical manipulation of single crystals could be beneficial.

14.
Biosensors (Basel) ; 4(3): 257-72, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25587422

RESUMO

This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes in electrical properties compared with non-treated cells. We found that our microfluidic system was able to distinguish between treated and non-treated cells. Furthermore, we utilize a model for electrical impedance spectroscopy in order to perform a theoretical study to clarify our results. This study focuses on investigating the changes in the electrical properties of the cell membrane caused by the effect of paclitaxel. We observe good agreement between the model and the obtained results. This establishes the proof-of-concept for the application in cell drug therapy.

15.
Sensors (Basel) ; 10(11): 10339-55, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22163473

RESUMO

In this paper we discuss the fabrication and characterization of three dimensional (3D) micro- and nanoelectrodes with the goal of using them for extra- and intracellular studies. Two different types of electrodes will be described: high aspect ratio microelectrodes for studying the communication between cells and ultimately for brain slice recordings and small nanoelectrodes for highly localized measurements and ultimately for intracellular studies. Electrical and electrochemical characterization of these electrodes as well as the results of PC12 cell differentiation on chip will be presented and discussed.


Assuntos
Eletroquímica/métodos , Eletrodos , Microeletrodos , Nanotecnologia/métodos , Neurônios/metabolismo , Eletroquímica/instrumentação , Humanos , Nanotecnologia/instrumentação
16.
Biosens Bioelectron ; 24(2): 290-6, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18511254

RESUMO

This article presents the fabrication and characterisation of a high-speed detection micro-Coulter counter with two-dimensional (2D) adjustable aperture and differential impedance detection. The developed device has been fabricated from biocompatible and transparent materials (polymer and glass) and uses the principle of hydrodynamic focusing in two dimensions. The use of a conductive solution for the sample flux and non-conductive solutions for the focalising fluxes provides an adjustable sample flow where particles are aligned and the resistive response concentrated, consequently enhancing the sensitivity and versatility of the device. High-speed counting of 20 microm polystyrene particles and 5 microm yeast cells with a rate of up to 1,000 particles/s has been demonstrated. Two-dimensional focusing conditions have been used in devices with physical cross-sectional areas of 180 microm x 65 microm and 100 microm x 43 microm, respectively, in which particles resulted undetectable in the absence of focusing. The 2D-focusing conditions have provided, in addition, increased detection sensitivity by a factor of 1.6 as compared to 1D-focusing conditions.


Assuntos
Contagem de Células/instrumentação , Eletrônica/instrumentação , Citometria de Fluxo/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA