Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(22): 9679-9688, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38776554

RESUMO

Wildfires produce solid residuals that have unique chemical and physical properties compared to unburned materials, which influence their cycling and fate in the natural environment. Visual burn severity assessment is used to evaluate post-fire alterations to the landscape in field-based studies, yet muffle furnace methods are commonly used in laboratory studies to assess molecular scale alterations along a temperature continuum. Here, we examined solid and leachable organic matter characteristics from chars visually characterized as low burn severity that were created either on an open air burn table or from low-temperature muffle furnace burns. We assessed how the different combustion conditions influence solid and dissolved organic matter chemistries and explored the potential influence of these results on the environmental fate and reactivity. Notably, muffle furnace chars produced less leachable carbon and nitrogen than open air chars across land cover types. Organic matter produced from muffle furnace burns was more homogeneous than open air chars. This work highlights chemical heterogeneities that exist within a single burn severity category, potentially influencing our conceptual understanding of pyrogenic organic matter cycling in the natural environment, including transport and processing in watersheds. Therefore, we suggest that open air burn studies are needed to further advance our understanding of pyrogenic organic matter's environmental reactivity and fate.


Assuntos
Incêndios Florestais , Compostos Orgânicos
2.
Sci Total Environ ; 752: 141839, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889275

RESUMO

Human activities can alter dissolved organic matter (DOM) in lakes through both direct (i.e., exporting DOM of anthropogenic sources) and indirect effects (i.e., enhancing the autochthonous production of DOM via nutrient loading). Distinguishing between the direct and indirect effects is important to better understand human impacts on aquatic systems, but it remains highly challenging due to the interdependence of associated environmental variables. Here, we demonstrated that disentangling the direct and indirect effects can be achieved through combining large-scale environmental monitoring with the Partial Least Squares Path Modeling (PLS-PM). We presented DOM data from 61 lakes within the floodplain of the Yangtze River (Lakes-YR), China, a region that has been subjected to intense anthropogenic disturbances. We analyzed the amount and composition of DOM through dissolved organic carbon (DOC), chromophoric DOM (CDOM), and fluorescent DOM (FDOM). Four fluorescence components were identified, including one tyrosine-like component, one tryptophan-like component, and two humic-like components. Most of the lakes were dominated by freshly produced DOM with small molecular weights and low humification. Results from the PLS-PM models showed that the autochthonous production was more important than anthropogenic inputs in mediating DOC and CDOM. In contrast, FDOM parameters in lakes were more sensitive to the direct, anthropogenic sources, including treated domestic, industrial wastewater, and the effluents of aquaculture. These sources can be identified by elevated FDOM content per DOC (FDOM: DOC ratio) relative to autochthonous DOM, suggesting the potential of using FDOM as a tracer to identify and monitor the contribution of anthropogenic organic matter to inland waters.

3.
Environ Sci Technol ; 52(15): 8104-8114, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29940732

RESUMO

Rivers export roughly 250 Pg of dissolved organic carbon (DOC) to coastal oceans. DOC exported from rivers can be a reflection of watershed dynamics, and changes in land use can lead to shifts in the molecular composition and reactivity of riverine DOC. About 10% of DOC exported from rivers is dissolved black carbon (DBC), a collection of polycondensed aromatic compounds derived from the incomplete combustion of biomass and fossil fuels. While DOC and DBC export are generally coupled, the effects of watershed land use on DBC quality are not well understood. In this study, DBC samples were collected throughout the Altamaha River watershed in Georgia, USA. DBC was characterized using the benzenepoly(carboxylic acid) method and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). DBC had a more polycondensed character in areas of the watershed with less anthropogenic disturbance. Furthermore, FTICR-MS revealed that DBC became enriched with a lower molecular weight, heteroatomic signature in response to higher anthropogenic activity. As global land cover continues to change, this study demonstrates on a localized scale that watershed land use can influence the export and composition of DBC, which may have further implications for global carbon and nutrient cycling.


Assuntos
Rios , Fuligem , Carbono , Georgia , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA