Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(43): 21748-21757, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591200

RESUMO

The development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria. We identified a compound, MRL-494, that inhibits assembly of OM proteins (OMPs) by the ß-barrel assembly machine (BAM complex). The BAM complex contains one essential surface-exposed protein, BamA. We constructed a bamA mutagenesis library, screened for resistance to MRL-494, and identified the mutation bamAE470K BamAE470K restores OMP biogenesis in the presence of MRL-494. The mutant protein has both altered conformation and activity, suggesting it could either inhibit MRL-494 binding or allow BamA to function in the presence of MRL-494. By cellular thermal shift assay (CETSA), we determined that MRL-494 stabilizes BamA and BamAE470K from thermally induced aggregation, indicating direct or proximal binding to both BamA and BamAE470K Thus, it is the altered activity of BamAE470K responsible for resistance to MRL-494. Strikingly, MRL-494 possesses a second mechanism of action that kills gram-positive organisms. In microbes lacking an OM, MRL-494 lethally disrupts the cytoplasmic membrane. We suggest that the compound cannot disrupt the cytoplasmic membrane of gram-negative bacteria because it cannot penetrate the OM. Instead, MRL-494 inhibits OMP biogenesis from outside the OM by targeting BamA. The identification of a small molecule that inhibits OMP biogenesis at the cell surface represents a distinct class of antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Triazinas/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico/fisiologia , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana
2.
Proc Natl Acad Sci U S A ; 115(28): E6614-E6621, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941590

RESUMO

The outer membrane (OM) of Gram-negative bacteria forms a robust permeability barrier that blocks entry of toxins and antibiotics. Most OM proteins (OMPs) assume a ß-barrel fold, and some form aqueous channels for nutrient uptake and efflux of intracellular toxins. The Bam machine catalyzes rapid folding and assembly of OMPs. Fidelity of OMP biogenesis is monitored by the σE stress response. When OMP folding defects arise, the proteases DegS and RseP act sequentially to liberate σE into the cytosol, enabling it to activate transcription of the stress regulon. Here, we identify batimastat as a selective inhibitor of RseP that causes a lethal decrease in σE activity in Escherichia coli, and we further identify RseP mutants that are insensitive to inhibition and confer resistance. Remarkably, batimastat treatment allows the capture of elusive intermediates in the OMP biogenesis pathway and offers opportunities to better understand the underlying basis for σE essentiality.


Assuntos
Proteínas da Membrana Bacteriana Externa , Endopeptidases , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Membrana , Desdobramento de Proteína , Fatores de Transcrição , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fatores de Transcrição/metabolismo
3.
Methods Mol Biol ; 1787: 19-40, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736707

RESUMO

A riboflavin biosynthesis pathway-specific phenotypic screen using a library of compounds, all with unspecified antibiotic activity, identified one small molecule later named ribocil, for which intrinsic antibacterial activity against Escherichia coli was completely suppressed by addition of exogenous riboflavin to the bacterial growth medium. The ability of riboflavin to suppress the activity of ribocil, and further demonstration that ribocil inhibited riboflavin synthesis (IC50 = 0.3 µM), supported that a component of the riboflavin synthesis pathway was the molecular target. Remarkably, resistance mutation selection and whole-genome sequencing showed that the target of ribocil was not an enzyme in the riboflavin biosynthesis pathway, but instead the flavin mononucleotide riboswitch, a noncoding structural RNA element in the ribB gene that encodes a key riboflavin synthesis enzyme. Although ribocil is structurally distinct from the natural riboswitch regulatory ligand flavin mononucleotide, ribocil binding to the riboswitch results in efficient repression of ribB expression and inhibition of riboflavin biosynthesis and bacterial growth. A cell-based riboswitch regulated gene reporter assay as well as an in vitro riboswitch RNA aptamer-binding assay, both of which are described in detail here along with the riboflavin pathway-specific screen, were developed to further validate the mechanism of action of ribocil and to facilitate the discovery of more potent analogues.


Assuntos
Descoberta de Drogas , Metabolismo Energético/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Mononucleotídeo de Flavina/metabolismo , Riboflavina/metabolismo , Riboswitch/efeitos dos fármacos , Antibacterianos/farmacologia , Clonagem Molecular , Genes Reporter , Ligantes , Mutação , Fenótipo , Plasmídeos , Técnica de Seleção de Aptâmeros , Bibliotecas de Moléculas Pequenas
4.
Int J Med Microbiol ; 308(3): 335-348, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29429584

RESUMO

The first-in-class lipopeptide antibiotic daptomycin (DAP) is highly active against Gram-positive pathogens including ß-lactam and glycopeptide resistant strains. Its molecular mode of action remains enigmatic, since a defined target has not been identified so far and multiple effects, primarily on the cell envelope have been observed. Reduced DAP susceptibility has been described in S. aureus and enterococci after prolonged treatment courses. In line with its pleiotropic antibiotic activities, a unique, defined molecular mechanism of resistance has not emerged, instead non-susceptibility appears often accompanied by alterations in membrane composition and changes in cell wall homeostasis. We compared S. aureus strains HG001 and SG511, which differ primarily in the functionality of the histidine kinase GraS, to evaluate the impact of the GraRS regulatory system on the development of DAP non-susceptibility. After extensive serial passing, both DAPR variants reached a minimal inhibitory concentration of 31 µg/ml and shared some phenotypic characteristics (e.g. thicker cell wall, reduced autolysis). However, based on comprehensive analysis of the underlying genetic, transcriptomic and proteomic changes, we found that both strains took different routes to achieve DAP resistance. Our study highlights the impressive genetic and physiological capacity of S. aureus to counteract pleiotropic activities of cell wall- and membrane-active compounds even when a major cell wall regulatory system is dysfunctional.


Assuntos
Proteínas de Bactérias/genética , Daptomicina/farmacologia , Regulação Bacteriana da Expressão Gênica , Mutação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Membrana Celular/metabolismo , Farmacorresistência Bacteriana/genética , Genótipo , Histidina Quinase/genética , Testes de Sensibilidade Microbiana , Proteômica , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/fisiologia
5.
Angew Chem Int Ed Engl ; 56(42): 13036-13040, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28793176

RESUMO

Systemic fungal infections represent an important public health concern, and new antifungal agents are highly desirable. Herein, we describe the design, synthesis, and biological evaluation of a novel class of antifungal compounds called antibody-recruiting molecules targeting fungi (ARM-Fs). Our approach relies on the use of non-peptidic small molecules, which selectively bind fungal cells and recruit endogenous antibodies to their surfaces, resulting in immune-mediated clearance. Using the opportunistic fungal pathogen Candida albicans as a model, we identified a highly specific bifunctional molecule able to mediate the engulfment and phagocytosis of C. albicans cells by human immune cells in biologically relevant functional assays. This work represents a novel therapeutic approach to treating fungal illness with significant potential to complement and/or combine with existing treatment strategies.


Assuntos
Anticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Candida albicans/imunologia , Acetilglucosamina/química , Anticorpos/metabolismo , Subpopulações de Linfócitos B/citologia , Candida albicans/metabolismo , Candida albicans/patogenicidade , Quitina/química , Quitina/metabolismo , Dinitrobenzenos/química , Dinitrobenzenos/imunologia , Desenho de Fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Células HL-60 , Interações Hospedeiro-Patógeno , Humanos , Fagocitose
6.
PLoS One ; 12(7): e0180965, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28700746

RESUMO

To combat the threat of antibiotic-resistant Gram-negative bacteria, novel agents that circumvent established resistance mechanisms are urgently needed. Our approach was to focus first on identifying bioactive small molecules followed by chemical lead prioritization and target identification. Within this annotated library of bioactives, we identified a small molecule with activity against efflux-deficient Escherichia coli and other sensitized Gram-negatives. Further studies suggested that this compound inhibited DNA replication and selection for resistance identified mutations in a subunit of E. coli DNA gyrase, a type II topoisomerase. Our initial compound demonstrated weak inhibition of DNA gyrase activity while optimized compounds demonstrated significantly improved inhibition of E. coli and Pseudomonas aeruginosa DNA gyrase and caused cleaved complex stabilization, a hallmark of certain bactericidal DNA gyrase inhibitors. Amino acid substitutions conferring resistance to this new class of DNA gyrase inhibitors reside exclusively in the TOPRIM domain of GyrB and are not associated with resistance to the fluoroquinolones, suggesting a novel binding site for a gyrase inhibitor.


Assuntos
Antibacterianos/farmacologia , DNA Girase/metabolismo , Inibidores da Topoisomerase II/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , Domínios Proteicos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia
7.
Cell Chem Biol ; 24(5): 576-588.e6, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28434876

RESUMO

Riboswitches are bacterial-specific, broadly conserved, non-coding RNA structural elements that control gene expression of numerous metabolic pathways and transport functions essential for cell growth. As such, riboswitch inhibitors represent a new class of potential antibacterial agents. Recently, we identified ribocil-C, a highly selective inhibitor of the flavin mononucleotide (FMN) riboswitch that controls expression of de novo riboflavin (RF, vitamin B2) biosynthesis in Escherichia coli. Here, we provide a mechanistic characterization of the antibacterial effects of ribocil-C as well as of roseoflavin (RoF), an antimetabolite analog of RF, among medically significant Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis. We provide genetic, biophysical, computational, biochemical, and pharmacological evidence that ribocil-C and RoF specifically inhibit dual FMN riboswitches, separately controlling RF biosynthesis and uptake processes essential for MRSA growth and pathogenesis. Such a dual-targeting mechanism is specifically required to develop broad-spectrum Gram-positive antibacterial agents targeting RF metabolism.


Assuntos
Mononucleotídeo de Flavina/genética , Homeostase/efeitos dos fármacos , Pirimidinas/farmacologia , Riboflavina/análogos & derivados , Riboflavina/metabolismo , Riboswitch/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Sequência de Bases , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Staphylococcus aureus Resistente à Meticilina/fisiologia , Camundongos , Modelos Moleculares , Terapia de Alvo Molecular , Conformação Proteica , Riboflavina/farmacologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiologia
8.
J Med Chem ; 60(9): 3851-3865, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28322556

RESUMO

We describe our optimization efforts to improve the physicochemical properties, solubility, and off-target profile of 1, an inhibitor of TarO, an early stage enzyme in the biosynthetic pathway for wall teichoic acid (WTA) synthesis. Compound 1 displayed a TarO IC50 of 125 nM in an enzyme assay and possessed very high lipophilicity (clogP = 7.1) with no measurable solubility in PBS buffer. Structure-activity relationship (SAR) studies resulted in a series of compounds with improved lipophilic ligand efficiency (LLE) consistent with the reduction of clogP. From these efforts, analog 9 was selected for our initial in vivo study, which in combination with subefficacious dose of imipenem (IPM) robustly lowered the bacterial burden in a neutropenic Staphylococci murine infection model. Concurrent with our in vivo optimization effort using 9, we further improved LLE as exemplified by a much more druglike analog 26.


Assuntos
Lipídeos/química , Bibliotecas de Moléculas Pequenas , Animais , Feminino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Solubilidade , Relação Estrutura-Atividade
9.
mBio ; 7(5)2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27601570

RESUMO

UNLABELLED: A mechanistic understanding of the determination and maintenance of the simplest bacterial cell shape, a sphere, remains elusive compared with that of more complex shapes. Cocci seem to lack a dedicated elongation machinery, and a spherical shape has been considered an evolutionary dead-end morphology, as a transition from a spherical to a rod-like shape has never been observed in bacteria. Here we show that a Staphylococcus aureus mutant (M5) expressing the ftsZ(G193D) allele exhibits elongated cells. Molecular dynamics simulations and in vitro studies indicate that FtsZ(G193D) filaments are more twisted and shorter than wild-type filaments. In vivo, M5 cell wall deposition is initiated asymmetrically, only on one side of the cell, and progresses into a helical pattern rather than into a constricting ring as in wild-type cells. This helical pattern of wall insertion leads to elongation, as in rod-shaped cells. Thus, structural flexibility of FtsZ filaments can result in an FtsZ-dependent mechanism for generating elongated cells from cocci. IMPORTANCE: The mechanisms by which bacteria generate and maintain even the simplest cell shape remain an elusive but fundamental question in microbiology. In the absence of examples of coccus-to-rod transitions, the spherical shape has been suggested to be an evolutionary dead end in morphogenesis. We describe the first observation of the generation of elongated cells from truly spherical cocci, occurring in a Staphylococcus aureus mutant containing a single point mutation in its genome, in the gene encoding the bacterial tubulin homologue FtsZ. We demonstrate that FtsZ-dependent cell elongation is possible, even in the absence of dedicated elongation machinery.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Staphylococcus aureus/citologia , Staphylococcus aureus/genética , Microscopia , Simulação de Dinâmica Molecular , Conformação Proteica
10.
RNA Biol ; 13(10): 946-954, 2016 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-27485612

RESUMO

Bacterial riboswitches are non-coding RNA structural elements that direct gene expression in numerous metabolic pathways. The key regulatory roles of riboswitches, and the urgent need for new classes of antibiotics to treat multi-drug resistant bacteria, has led to efforts to develop small-molecules that mimic natural riboswitch ligands to inhibit metabolic pathways and bacterial growth. Recently, we reported the results of a phenotypic screen targeting the riboflavin biosynthesis pathway in the Gram-negative bacteria Escherichia coli that led to the identification of ribocil, a small molecule inhibitor of the flavin mononucleotide (FMN) riboswitch controlling expression of this biosynthetic pathway. Although ribocil is structurally distinct from FMN, ribocil functions as a potent and highly selective synthetic mimic of the natural ligand to repress riboswitch-mediated ribB gene expression and inhibit bacterial growth both in vitro and in vivo. Herein, we expand our analysis of ribocil; including mode of binding in the FMN binding pocket of the riboswitch, mechanisms of resistance and structure-activity relationship guided efforts to generate more potent analogs.

11.
Bioorg Med Chem Lett ; 26(19): 4743-4747, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27575474

RESUMO

A series of benzimidazole analogs have been synthesized to improve the profile of the previous lead compounds tarocin B and 1. The syntheses, structure-activity relationships, and selected biochemical data of these analogs are described. The optimization efforts allowed the identification of 21, a fluoro-substituted benzimidazole, exhibiting potent TarO inhibitory activity and typical profile for a wall teichoic acid (WTA) biosynthesis inhibitor. Compound 21 displayed a potent synergistic and bactericidal effect in combination with imipenem against diverse methicillin-resistant Staphylococci.


Assuntos
Antibacterianos/farmacologia , Benzimidazóis/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Ácidos Teicoicos/antagonistas & inibidores , Animais , Antibacterianos/química , Benzimidazóis/química , Testes de Sensibilidade Microbiana , Ratos , Relação Estrutura-Atividade , Ácidos Teicoicos/biossíntese
13.
Bioorg Med Chem Lett ; 26(16): 3999-4002, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27436582

RESUMO

The widespread emergence of methicillin-resistant Staphylococcus aureus (MRSA) has dramatically eroded the efficacy of current ß-lactam antibiotics and created an urgent need for novel treatment options. Using an S. aureus phenotypic screening strategy, we have identified small molecule early stage wall teichoic acid (WTA) pathway-specific inhibitors predicted to be chemically synergistic with ß-lactams. These previously disclosed inhibitors, termed tarocins, demonstrate by genetic and biochemical means inhibition of TarO, the first step in WTA biosynthesis. Tarocins demonstrate potent bactericidal synergy in combination with broad spectrum ß-lactam antibiotics across diverse clinical isolates of methicillin-resistant Staphylococci. The synthesis and structure-activity relationships (SAR) of a tarocin series will be detailed. Tarocins and other WTA inhibitors may provide a rational strategy to develop Gram-positive bactericidal ß-lactam combination agents active against methicillin-resistant Staphylococci.


Assuntos
Antibacterianos/química , Ácidos Teicoicos/metabolismo , beta-Lactamas/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Avaliação Pré-Clínica de Medicamentos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , beta-Lactamas/metabolismo
14.
PLoS Pathog ; 12(5): e1005585, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27144276

RESUMO

Here we describe a chemical biology strategy performed in Staphylococcus aureus and Staphylococcus epidermidis to identify MnaA, a 2-epimerase that we demonstrate interconverts UDP-GlcNAc and UDP-ManNAc to modulate substrate levels of TarO and TarA wall teichoic acid (WTA) biosynthesis enzymes. Genetic inactivation of mnaA results in complete loss of WTA and dramatic in vitro ß-lactam hypersensitivity in methicillin-resistant S. aureus (MRSA) and S. epidermidis (MRSE). Likewise, the ß-lactam antibiotic imipenem exhibits restored bactericidal activity against mnaA mutants in vitro and concomitant efficacy against 2-epimerase defective strains in a mouse thigh model of MRSA and MRSE infection. Interestingly, whereas MnaA serves as the sole 2-epimerase required for WTA biosynthesis in S. epidermidis, MnaA and Cap5P provide compensatory WTA functional roles in S. aureus. We also demonstrate that MnaA and other enzymes of WTA biosynthesis are required for biofilm formation in MRSA and MRSE. We further determine the 1.9Å crystal structure of S. aureus MnaA and identify critical residues for enzymatic dimerization, stability, and substrate binding. Finally, the natural product antibiotic tunicamycin is shown to physically bind MnaA and Cap5P and inhibit 2-epimerase activity, demonstrating that it inhibits a previously unanticipated step in WTA biosynthesis. In summary, MnaA serves as a new Staphylococcal antibiotic target with cognate inhibitors predicted to possess dual therapeutic benefit: as combination agents to restore ß-lactam efficacy against MRSA and MRSE and as non-bioactive prophylactic agents to prevent Staphylococcal biofilm formation.


Assuntos
Proteínas de Bactérias/metabolismo , Racemases e Epimerases/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus epidermidis/metabolismo , Ácidos Teicoicos/biossíntese , Animais , Proteínas de Bactérias/química , Biofilmes/crescimento & desenvolvimento , Parede Celular/metabolismo , Cristalografia por Raios X , Modelos Animais de Doenças , Staphylococcus aureus Resistente à Meticilina , Camundongos , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Ressonância Magnética Nuclear Biomolecular , Racemases e Epimerases/química , Infecções Estafilocócicas/metabolismo
15.
Sci Transl Med ; 8(329): 329ra32, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26962156

RESUMO

The widespread emergence of methicillin-resistant Staphylococcus aureus (MRSA) has dramatically eroded the efficacy of current ß-lactam antibiotics and created an urgent need for new treatment options. We report an S. aureus phenotypic screening strategy involving chemical suppression of the growth inhibitory consequences of depleting late-stage wall teichoic acid biosynthesis. This enabled us to identify early-stage pathway-specific inhibitors of wall teichoic acid biosynthesis predicted to be chemically synergistic with ß-lactams. We demonstrated by genetic and biochemical means that each of the new chemical series discovered, herein named tarocin A and tarocin B, inhibited the first step in wall teichoic acid biosynthesis (TarO). Tarocins do not have intrinsic bioactivity but rather demonstrated potent bactericidal synergy in combination with broad-spectrum ß-lactam antibiotics against diverse clinical isolates of methicillin-resistant staphylococci as well as robust efficacy in a murine infection model of MRSA. Tarocins and other inhibitors of wall teichoic acid biosynthesis may provide a rational strategy to develop Gram-positive bactericidal ß-lactam combination agents active against methicillin-resistant staphylococci.


Assuntos
Proteínas de Bactérias/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Parede Celular/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Ácidos Teicoicos/biossíntese , beta-Lactamas/farmacologia , Animais , Parede Celular/efeitos dos fármacos , Dicloxacilina/farmacologia , Dicloxacilina/uso terapêutico , Feminino , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Modelos Moleculares , Fenótipo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Resultado do Tratamento
16.
J Biomol Screen ; 21(6): 579-89, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27028606

RESUMO

Nonessential enzymes in the staphylococcal wall teichoic acid (WTA) pathway serve as highly validated ß-lactam potentiation targets. MnaA (UDP-GlcNAc 2-epimerase) plays an important role in an early step of WTA biosynthesis by providing an activated form of ManNAc. Identification of a selective MnaA inhibitor would provide a tool to interrogate the contribution of the MnaA enzyme in the WTA pathway as well as serve as an adjuvant to restore ß-lactam activity against methicillin-resistant Staphylococcus aureus (MRSA). However, development of an epimerase functional assay can be challenging since both MnaA substrate and product (UDP-GlcNAc/UDP-ManNAc) share an identical molecular weight. Herein, we developed a nuclear magnetic resonance (NMR) functional assay that can be combined with other NMR approaches to triage putative MnaA inhibitors from phenotypic cell-based screening campaigns. In addition, we determined that tunicamycin, a potent WTA pathway inhibitor, inhibits both S. aureus MnaA and a functionally redundant epimerase, Cap5P.


Assuntos
Parede Celular/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/química , Parede Celular/química , Humanos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Açúcares de Uridina Difosfato/química , Açúcares de Uridina Difosfato/metabolismo , Resistência beta-Lactâmica/efeitos dos fármacos , beta-Lactamases/química , beta-Lactamases/efeitos dos fármacos
17.
Brief Funct Genomics ; 15(2): 147-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26443612

RESUMO

Paramount to any rational discovery of new antibiotics displaying novel mechanisms of action is a deep knowledge of the genetic basis of microbial growth, division and virulence. The bakers' yeast,Saccharomyces cerevisiae, illustrates the highest understanding of the genetic underpinnings of microbial life, and from this framework, a systems biology paradigm has evolved, begging to be emulated in antibacterial discovery. Here, we review landmark events in the history of yeast genomics that provide this new foundation for antibacterial drug discovery.


Assuntos
Descoberta de Drogas , Genômica , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/genética , Genoma Bacteriano , Genoma Fúngico , Haploinsuficiência , Saccharomyces cerevisiae/efeitos dos fármacos
18.
Nature ; 526(7575): 672-7, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26416753

RESUMO

Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected.


Assuntos
Pirimidinas/química , Pirimidinas/farmacologia , RNA Bacteriano/química , RNA Bacteriano/efeitos dos fármacos , Riboswitch/efeitos dos fármacos , Animais , Aptâmeros de Nucleotídeos/química , Bactérias/citologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Sequência de Bases , Cristalografia por Raios X , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Feminino , Mononucleotídeo de Flavina/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Transferases Intramoleculares/genética , Ligantes , Camundongos , Camundongos Endogâmicos DBA , Modelos Moleculares , Dados de Sequência Molecular , Pirimidinas/isolamento & purificação , Pirimidinas/uso terapêutico , RNA Bacteriano/genética , Reprodutibilidade dos Testes , Riboflavina/biossíntese , Riboswitch/genética , Especificidade por Substrato
19.
PLoS Pathog ; 11(5): e1004891, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25951442

RESUMO

Many important cellular processes are performed by molecular machines, composed of multiple proteins that physically interact to execute biological functions. An example is the bacterial peptidoglycan (PG) synthesis machine, responsible for the synthesis of the main component of the cell wall and the target of many contemporary antibiotics. One approach for the identification of essential components of a cellular machine involves the determination of its minimal protein composition. Staphylococcus aureus is a Gram-positive pathogen, renowned for its resistance to many commonly used antibiotics and prevalence in hospitals. Its genome encodes a low number of proteins with PG synthesis activity (9 proteins), when compared to other model organisms, and is therefore a good model for the study of a minimal PG synthesis machine. We deleted seven of the nine genes encoding PG synthesis enzymes from the S. aureus genome without affecting normal growth or cell morphology, generating a strain capable of PG biosynthesis catalyzed only by two penicillin-binding proteins, PBP1 and the bi-functional PBP2. However, multiple PBPs are important in clinically relevant environments, as bacteria with a minimal PG synthesis machinery became highly susceptible to cell wall-targeting antibiotics, host lytic enzymes and displayed impaired virulence in a Drosophila infection model which is dependent on the presence of specific peptidoglycan receptor proteins, namely PGRP-SA. The fact that S. aureus can grow and divide with only two active PG synthesizing enzymes shows that most of these enzymes are redundant in vitro and identifies the minimal PG synthesis machinery of S. aureus. However a complex molecular machine is important in environments other than in vitro growth as the expendable PG synthesis enzymes play an important role in the pathogenicity and antibiotic resistance of S. aureus.


Assuntos
Antibacterianos/farmacologia , Parede Celular/metabolismo , Farmacorresistência Bacteriana Múltipla , Staphylococcus aureus Resistente à Meticilina/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Peptidil Transferases/metabolismo , Animais , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiologia , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Staphylococcus aureus Resistente à Meticilina/ultraestrutura , Viabilidade Microbiana/efeitos dos fármacos , Mutação , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano Glicosiltransferase/genética , Peptidoglicano Glicosiltransferase/metabolismo , Peptidil Transferases/genética , Filogenia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Virulência/efeitos dos fármacos
20.
Nat Commun ; 6: 6741, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25824284

RESUMO

Developmental transitions between single-cell yeast and multicellular filaments underpin virulence of diverse fungal pathogens. For the leading human fungal pathogen Candida albicans, filamentation is thought to be required for immune cell escape via induction of an inflammatory programmed cell death. Here we perform a genome-scale analysis of C. albicans morphogenesis and identify 102 negative morphogenetic regulators and 872 positive regulators, highlighting key roles for ergosterol biosynthesis and N-linked glycosylation. We demonstrate that C. albicans filamentation is not required for escape from host immune cells; instead, macrophage pyroptosis is driven by fungal cell-wall remodelling and exposure of glycosylated proteins in response to the macrophage phagosome. The capacity of killed, previously phagocytized cells to drive macrophage lysis is also observed with the distantly related fungal pathogen Cryptococcus neoformans. This study provides a global view of morphogenetic circuitry governing a key virulence trait, and illuminates a new mechanism by which fungi trigger host cell death.


Assuntos
Candida albicans/genética , Cryptococcus neoformans/genética , Hifas/genética , Evasão da Resposta Imune/genética , Macrófagos/imunologia , Morfogênese/genética , Piroptose/imunologia , Animais , Candida albicans/imunologia , Candida albicans/ultraestrutura , Morte Celular , Linhagem Celular , Parede Celular , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/ultraestrutura , Hifas/imunologia , Evasão da Resposta Imune/imunologia , Camundongos , Microscopia de Interferência , Morfogênese/imunologia , Fagossomos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/imunologia , Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA