RESUMO
Contractions of the uterus play an important role in menstruation and fertility, and contractile dysfunction can lead to chronic diseases such as endometriosis. However, the structure and function of the uterus are difficult to interrogate in humans, and thus animal studies are often employed to understand its function. In rats, anatomical studies of the uterus have typically been based on histological assessment, have been limited to small segments of the uterine structure, and have been time-consuming to reconstruct at the organ scale. This study used micro-computed tomography imaging to visualise the muscle structures in the entire non-pregnant rat uterus and assess its use for 3D virtual histology. An assessment of the rodent uterus is presented to (i) quantify muscle thickness variations along the horns, (ii) identify predominant fibre orientations of the muscles and (iii) demonstrate how the anatomy of the uterus can be mapped to 3D volumetric meshes via virtual histology. Micro-computed tomography measurements were validated against measurements from histological sections. The average thickness of the myometrium was found to be 0.33 ± 0.11 mm and 0.31 ± 0.09 mm in the left and right horns, respectively. The micro-computed tomography and histology thickness calculations were found to correlate strongly at different locations in the uterus: at the cervix, r = 0.87, and along the horn from the cervical end to the ovarian end, respectively, r = 0.77, r = 0.89 and r = 0.54, with p < 0.001 in every location. This study shows that micro-computed tomography can be used to quantify the musculature in the whole non-pregnant uterus and can be used for 3D virtual histology.
RESUMO
The uterus exhibits intermittent electrophysiological activity in vivo. Although most active during labor, the non-pregnant uterus can exhibit activity of comparable magnitude to the early stages of labor. In this study, two types of flexible electrodes were utilized to measure the electrical activity of uterine smooth muscle in vivo in anesthetized, non-pregnant rats. Flexible printed circuit electrodes were placed on the serosal surface of the uterine horn of six anesthetized rats. Electrical activity was recorded for a duration of 20-30 min. Activity contained two components: high frequency activity (bursts) and an underlying low frequency 'slow wave' which occurred concurrently. These components had dominant frequencies of 6.82 ± 0.63 Hz for the burst frequency and 0.032 ± 0.0055 Hz for the slow wave frequency. There was a mean burst occurrence rate of 0.76 ± 0.23 bursts per minute and mean burst duration of 20.1 ± 6.5 s. The use of multiple high-resolution electrodes enabled 2D mapping of the initiation and propagation of activity along the uterine horn. This in vivo approach has the potential to provide the organ level detail to help interpret non-invasive body surface recordings.
Assuntos
Trabalho de Parto , Miométrio , Feminino , Gravidez , Ratos , Animais , Miométrio/fisiologia , Eletromiografia , Útero/fisiologia , Trabalho de Parto/fisiologia , Eletrodos , Contração Uterina/fisiologiaRESUMO
Multi-scale mathematical bioelectrical models of organs such as the uterus, stomach or heart present challenges both for accuracy and computational tractability. These multi-scale models are typically founded on models of biological cells derived from the classic Hodkgin-Huxley (HH) formalism. Ion channel behaviour is tracked with dynamical variables representing activation or inactivation of currents that relax to steady-state dependencies on cellular membrane voltage. Timescales for relaxation may be orders of magnitude faster than companion ion channel variables or phenomena of physiological interest for the entire cell (such as bursting sequences of action potentials) or the entire organ (such as electromechanical coordination). Exploiting these time scales with steady-state approximations for relatively fast-acting systems is a well-known but often overlooked approach as evidenced by recent published models. We thus investigate feasibility of an extensive reduction of order for an HH-type cell model with steady-state approximations to the full dynamical activation and inactivation ion channel variables. Our effort utilises a published comprehensive uterine smooth muscle cell model that encompasses 19 ordinary differential equations and 105 formulations overall. The numerous ion channel submodels in the published model exhibit relaxation times ranging from order 10-1 to 105 milliseconds. Substitution of the faster dynamic variables with steady-state formulations demonstrates both an accurate reproduction of the full model and substantial improvements in time-to-solve, for test cases performed. Our demonstration here of an effective and relatively straightforward reduction method underlines the particular importance of considering time scales for model simplification before embarking on large-scale computations or parameter sweeps. As a preliminary complement to more intensive reduction of order methods such as parameter sensitivity and bifurcation analysis, this approach can rapidly and accurately improve computational tractability for challenging multi-scale organ modelling efforts.
Assuntos
Coração , Células de Reed-Sternberg , Feminino , Humanos , Potenciais de Ação , Membrana Celular , Miócitos de Músculo LisoRESUMO
The uterus provides protection and nourishment (via its blood supply) to a developing fetus, and contracts to deliver the baby at an appropriate time, thereby having a critical contribution to the life of every human. However, despite this vital role, it is an under-investigated organ, and gaps remain in our understanding of how contractions are initiated or coordinated. The uterus is a smooth muscle organ that undergoes variations in its contractile function in response to hormonal fluctuations, the extreme instance of this being during pregnancy and labor. Researchers typically use various approaches to studying this organ, such as experiments on uterine muscle cells, tissue samples, or the intact organ, or the employment of mathematical models to simulate the electrical, mechanical and ionic activity. The complexity exhibited in the coordinated contractions of the uterus remains a challenge to understand, requiring coordinated solutions from different research fields. This review investigates differences in the underlying physiology between human and common animal models utilized in experiments, and the experimental interventions and computational models used to assess uterine function. We look to a future of hybrid experimental interventions and modeling techniques that could be employed to improve the understanding of the mechanisms enabling the healthy function of the uterus.
RESUMO
In the uterus, the characteristics of smooth muscle contraction and the electrical activity that drives this contraction depends on hormonal cycles, and pregnancy status. Smooth muscle contraction is initiated by a change in membrane electrical potential, due to the flux of ions in and out of the intracellular space. Chains of action potentials throughout a section of muscle can result in coordinated contraction events. In this study, flexible printed circuit electrode arrays were applied to measure the bioelectric signals on the surface of a rat uterus in vivo. Variations in the electrical activity were quantified, including intermittent periods of activity and inactivity, which contain both slow-wave type activity (0.039 Hz ±0.017 Hz) and faster, spike-like activity (3.26 Hz ±0.27 Hz). The spike activity initiated at the ovarian end of the uterine horn, spreading towards the cervical end with a propagation velocity of 5.34 ± 2.32 mm [Formula: see text]. In conclusion, this pilot study outlines a new method of in vivo measurement of uterine electrical activity in rats. Clinical Relevance- Measurement of bioelectrical data using in vivo techniques provides insight into the electromechanical function of uterine smooth muscle, which could provide insights into what drives coordinated contraction in the uterus.