Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 9: 2302, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337912

RESUMO

ESBL-producing Klebsiella pneumoniae (K. pneumoniae) represent an increasing problem both in human and veterinary medicine. As SHV-2 - encoding K. pneumoniae were recently detected in the broiler production we were interested in investigating a possible transmission along the broiler production chain and furthermore, in evaluating their possible impact on human health. Therefore, 41 ESBL-producing K. pneumoniae originating from a parent flock, from the hatcherys' environment during the hatching of that parent flocks' chickens, and from an associated fattening flock were investigated on an Illumina Miseq. Whole genome sequences were analyzed concerning their MLST-type, cgMLST-type, genotypic and phenotypic resistance, plasmid profiles and virulence genes. Irrespective of the origin of isolation all investigated isolates were multi-drug resistant, harbored the same ESBL-gene bla SHV-2, shared the same sequence type (ST3128) and displayed 100% similarity in core genome multilocus sequence typing (cgMLST). In addition, in silico plasmid typing found several Inc/Rep types associated with ESBL-plasmids. Summarizing, identical clones of SHV-2-producing K. pneumoniae were detected in different stages of the industrial broiler production in one out of seven investigated broiler chains. This proves the possibility of pseudo-vertical transmission of multi-resistant human pathogens from parent flocks to hatcheries and fattening flocks. Furthermore, the importance of cross-contamination along the production chain was shown. Although the ESBL-producing K. pneumoniae clone detected here in the broiler production has not been associated with clinical settings so far, our findings present a potential public health threat.

2.
Front Microbiol ; 9: 587, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670585

RESUMO

Mycobacterium kansasii is an emerging non-tuberculous mycobacterial (NTM) pathogen capable of causing severe lung disease. Of the seven currently recognized M. kansasii genotypes (I-VII), genotypes I and II are most prevalent and have been associated with human disease, whereas the other five (III-VII) genotypes are predominantly of environmental origin and are believed to be non-pathogenic. Subtyping of M. kansasii serves as a valuable tool to guide clinicians in pursuing diagnosis and to initiate the proper timely treatment. Most of the previous rapid diagnostic tests for mycobacteria employing the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) technology focused on species-level identification. The purpose of this study was to establish MALDI-TOF MS reference spectra database for discrimination of M. kansasii at the genotype level. A panel of 32 strains, representatives of M. kansasii genotypes I-VI were selected, whole cell proteins extracted and measured with MALDI-TOF MS. A unique main spectra (MSP) library was created using MALDI Biotyper Compass Explorer software. The spectra reproducibility was assessed by computing composite correlation index and MSPs cross-matching. One hundred clinical M. kansasii isolates used for testing of the database resulted in 90% identification at genus-level, 7% identification at species-level and 2% identification was below the threshold of log score value 1.7, of which all were correct at genotype level. One strain could not be identified. On the other hand, 37% of strains were identified at species level, 40% at genus level and 23% was not identified with the manufacturer's database. The MALDI-TOF MS was proven a rapid and robust tool to detect and differentiate between M. kansasii genotypes. It is concluded that MALDI-TOF MS has a potential to be incorporated into the routine diagnostic workflow of M. kansasii and possibly other NTM species.

3.
Front Microbiol ; 9: 538, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636734

RESUMO

Carbapenems are last-resort antibiotics used in human medicine. The increased detection of carbapenem-resistant Enterobacteriaceae (CRE) is therefore worrying. In 2011 we reported the first livestock-associated VIM-1-producing Salmonella (S.) enterica serovar Infantis (R3) isolate from dust, sampled in a German chicken fattening farm. Due to this observation we retrospectively investigated more than 536 stored bacterial cultures, isolated from 45 chicken fattening farms during the years 2011 and 2012. After a non-selective overnight incubation, the bacteria were transferred to selective media. Escherichia (E.) coli and Salmonella growing on these media were further investigated, including antibiotic susceptibility testing, carbapenemase gene screening and whole genome sequencing (WGS). In total, four CRE were found in three out of 45 investigated farms: Besides R3, one additional Salmonella (G-336-1a) as well as two E. coli isolates (G-336-2, G-268-2). All but G-268-2 harbored the blaVIM-1 gene. Salmonella isolates R3 and G-336-1 were closely related although derived from two different farms. All three blaVIM-1-encoding isolates possessed identical plasmids and the blaVIM-1- containing transposon showed mobility at least in vitro. In isolate G-268-2, the AmpC beta-lactamase gene blaCMY-2 but no known carbapenemase gene was identified. However, a transfer of the phenotypic resistance was possible. Furthermore, G-268-2 contained the mcr-1 gene, combining phenotypical carbapenem- as well as colistin resistance in one isolate. Carbapenem-resistant Enterobacteriaceae have been found in three out of 45 investigated chicken flocks. This finding is alarming and emphasizes the importance of intervention strategies to contain the environmental spread of resistant bacteria in animals and humans.

4.
Front Microbiol ; 8: 530, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28405193

RESUMO

Extended-spectrum ß-lactamases (ESBLs) and AmpC ß-lactamases are plasmid (but also chromosomally) encoded enzymes found in Enterobacteriaceae, determining resistance to a variety of important antibiotics including penicillins, cephalosporins, and monobactams. In recent decades, the prevalence of ESBL/AmpC-producing bacteria has increased rapidly across the world. Here, we evaluate the potential use of bacteriophages in terms of a reduction of antibiotic-resistant bacteria in healthy animals. The aim of our studies was to isolate bacteriophages capable of destroying ESBL/AmpC-producing Escherichia coli isolated from livestock habitats. The efficacy of isolated phages against ESBL/AmpC E. coli strains varies, but creation of a phage cocktail with broad activity spectrum is possible. This may indicate that the role of phages may not be limited to phage therapy, but bacterial viruses may also be applied against spread of bacteria with antibiotic resistance genes in the environment. We also addressed the hypothesis, that phages, effective for therapeutic purposes may be isolated from distant places and even from different environments other than the actual location of the targeted bacteria. This may be beneficial for practical purposes, as the construction of effective phage preparations does not require access to disease outbreaks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA