Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Br J Radiol ; 87(1040): 20130798, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24874766

RESUMO

OBJECTIVE: To evaluate the capabilities of photon counting spectral CT to differentiate components of coronary atherosclerotic plaque based on differences in spectral attenuation and iodine-based contrast agent concentration. METHODS: 10 calcified and 13 lipid-rich non-calcified histologically demonstrated atheromatous plaques from post-mortem human coronary arteries were scanned with a photon counting spectral CT scanner. Individual photons were counted and classified in one of six energy bins from 25 to 70 keV. Based on a maximum likelihood approach, maps of photoelectric absorption (PA), Compton scattering (CS) and iodine concentration (IC) were reconstructed. Intensity measurements were performed on each map in the vessel wall, the surrounding perivascular fat and the lipid-rich and the calcified plaques. PA and CS values are expressed relative to pure water values. A comparison between these different elements was performed using Kruskal-Wallis tests with pairwise post hoc Mann-Whitney U-tests and Sidak p-value adjustments. RESULTS: RESULTS for vessel wall, surrounding perivascular fat and lipid-rich and calcified plaques were, respectively, 1.19 ± 0.09, 0.73 ± 0.05, 1.08 ± 0.14 and 17.79 ± 6.70 for PA; 0.96 ± 0.02, 0.83 ± 0.02, 0.91 ± 0.03 and 2.53 ± 0.63 for CS; and 83.3 ± 10.1, 37.6 ± 8.1, 55.2 ± 14.0 and 4.9 ± 20.0 mmol l(-1) for IC, with a significant difference between all tissues for PA, CS and IC (p < 0.012). CONCLUSION: This study demonstrates the capability of energy-sensitive photon counting spectral CT to differentiate between calcifications and iodine-infused regions of human coronary artery atherosclerotic plaque samples by analysing differences in spectral attenuation and iodine-based contrast agent concentration. ADVANCES IN KNOWLEDGE: Photon counting spectral CT is a promising technique to identify plaque components by analysing differences in iodine-based contrast agent concentration, photoelectric attenuation and Compton scattering.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Placa Aterosclerótica/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Autopsia , Meios de Contraste , Humanos , Fótons , Interpretação de Imagem Radiográfica Assistida por Computador , Espalhamento de Radiação
2.
Phys Med Biol ; 54(5): 1307-18, 2009 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19190361

RESUMO

We present an analytical method to compute the basis image noise in the context of multi-energy x-ray imaging based on the Cramér-Rao lower bound (CRLB). The proposed formalism extends the original idea of Alvarez and Macovski (1976 Phys. Med. Biol. 21 733) to estimate the noise in the photo-effect and Compton-effect basis images in the case of dual-energy imaging. It includes an arbitrary number of independent, spectrally distinct attenuation measurements and also goes beyond the two-dimensional decomposition of the attenuation, including, e.g., a contrast agent as a third basis material. To illustrate our method, we consider three simple applications. The first application is to study the influence of the exact values for the energy thresholds on the basis image noise for a binned photon-counting system. The second application relates to the same detector system as the first and is an investigation of the dependence of the basis image noise on the energy resolution of the detector system. Finally, the third application provides an example for the case of an energy-integrating detector: the aim is to optimize the front-scintillator layer thickness of a dual-crystal detector for dual-energy imaging. The CRLB is used to minimize the noise of a photo-effect/Compton-effect basis material decomposition.


Assuntos
Processamento de Imagem Assistida por Computador , Modelos Teóricos , Cálcio/química , Gadolínio/química , Água/química , Raios X
3.
Phys Med Biol ; 53(15): 4031-47, 2008 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-18612175

RESUMO

Theoretical considerations predicted the feasibility of K-edge x-ray computed tomography (CT) imaging using energy discriminating detectors with more than two energy bins. This technique enables material-specific imaging in CT, which in combination with high-Z element based contrast agents, opens up possibilities for new medical applications. In this paper, we present a CT system with energy detection capabilities, which was used to demonstrate the feasibility of quantitative K-edge CT imaging experimentally. A phantom was imaged containing PMMA, calcium-hydroxyapatite, water and two contrast agents based on iodine and gadolinium, respectively. Separate images of the attenuation by photoelectric absorption and Compton scattering were reconstructed from energy-resolved projection data using maximum-likelihood basis-component decomposition. The data analysis further enabled the display of images of the individual contrast agents and their concentrations, separated from the anatomical background. Measured concentrations of iodine and gadolinium were in good agreement with the actual concentrations. Prior to the tomographic measurements, the detector response functions for monochromatic illumination using synchrotron radiation were determined in the energy range 25 keV-60 keV. These data were used to calibrate the detector and derive a phenomenological model for the detector response and the energy bin sensitivities.


Assuntos
Fótons , Tomografia Computadorizada por Raios X/métodos , Calibragem , Estudos de Viabilidade , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Síncrotrons
4.
Phys Med Biol ; 52(15): 4679-96, 2007 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-17634657

RESUMO

After passage through matter, the energy spectrum of a polychromatic beam of x-rays contains valuable information about the elemental composition of the absorber. Conventional x-ray systems or x-ray computed tomography (CT) systems, equipped with scintillator detectors operated in the integrating mode, are largely insensitive to this type of spectral information, since the detector output is proportional to the energy fluence integrated over the whole spectrum. The main purpose of this paper is to investigate to which extent energy-sensitive photon counting devices, operated in the pulse-mode, are capable of revealing quantitative information about the elemental composition of the absorber. We focus on the detection of element-specific, K-edge discontinuities of the photo-electric cross-section. To be specific, we address the question of measuring and imaging the local density of a gadolinium-based contrast agent, in the framework of a generalized dual-energy pre-processing. Our results are very promising and seem to open up new possibilities for the imaging of the distribution of elements with a high atomic number Z in the human body using x-ray attenuation measurements. To demonstrate the usefulness of the detection and the appropriate processing of the spectral information, we present simulated images of an artherosclerotic coronary vessel filled with gadolinium-based contrast agent. While conventional systems, equipped with integrating detectors, often fail to differentiate between contrast filled lumen and artherosclerotic plaque, the use of an energy-selective detection system based on the counting of individual photons reveals a strong contrast between plaque and contrast agent.


Assuntos
Algoritmos , Fótons , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiometria/métodos , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Doses de Radiação , Radiometria/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA