Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 31(12): 2752-2760, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28439110

RESUMO

An increasing number of variants of unknown significance are being identified in leukemia patients with the application of deep sequencing and these include CSF3R cytoplasmic mutations. Previous studies have demonstrated oncogenic potential of certain CSF3R truncation mutations prior to internalization motifs. However, the oncogenic potential of truncating the more distal region of CSF3R cytoplasmic domain as well as cytoplasmic missense mutations remains uncharacterized. Here we identified that CSF3R distal cytoplasmic truncation mutations (Q793-Q823) also harbored leukemogenic potential. Mechanistically, these distal cytoplasmic truncation mutations demonstrated markedly decreased receptor degradation, probably owing to loss of the de-phosphorylation domain (residues N818-F836). Furthermore, all truncations prior to Q823 demonstrated increased expression of the higher molecular weight CSF3R band, which is shown to be essential for the receptor surface expression and the oncogenic potential. We further demonstrated that sufficient STAT5 activation is essential for oncogenic potential. In addition, CSF3R K704A demonstrated transforming capacity due to interruption of receptor ubiquitination and degradation. In summary, we have expanded the region of the CSF3R cytoplasmic domain in which truncation or missense mutations exhibit leukemogenic capacity, which will be useful for evaluating the relevance of CSF3R mutations in patients and helpful in defining targeted therapy strategies.


Assuntos
Transformação Celular Neoplásica/genética , Mutação de Sentido Incorreto , Domínios Proteicos/genética , Receptores de Fator Estimulador de Colônias/genética , Deleção de Sequência , Alelos , Animais , Linhagem Celular , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Transtornos Mieloproliferativos/genética , Fosforilação , Proteólise , Receptores de Fator Estimulador de Colônias/química , Fator de Transcrição STAT5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA