Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Clin Transl Med ; 14(3): e1632, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38515278

RESUMO

INTRODUCTION: Despite considerable therapeutic advances in the last 20 years, metastatic cancers remain a major cause of death. We previously identified prominin-2 (PROM2) as a biomarker predictive of distant metastases and decreased survival, thus providing a promising bio-target. In this translational study, we set out to decipher the biological roles of PROM2 during the metastatic process and resistance to cell death, in particular for metastatic melanoma. METHODS AND RESULTS: Methods and results: We demonstrated that PROM2 overexpression was closely linked to an increased metastatic potential through the increase of epithelial-to-mesenchymal transition (EMT) marker expression and ferroptosis resistance. This was also found in renal cell carcinoma and triple negative breast cancer patient-derived xenograft models. Using an oligonucleotide anti-sense anti-PROM2, we efficaciously decreased PROM2 expression and prevented metastases in melanoma xenografts. We also demonstrated that PROM2 was implicated in an aggravation loop, contributing to increase the metastatic burden both in murine metastatic models and in patients with metastatic melanoma. The metastatic burden is closely linked to PROM2 expression through the expression of EMT markers and ferroptosis cell death resistance in a deterioration loop. CONCLUSION: Our results open the way for further studies using PROM2 as a bio-target in resort situations in human metastatic melanoma and also in other cancer types.


Assuntos
Ferroptose , Melanoma , Humanos , Animais , Camundongos , Ferroptose/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Glicoproteínas de Membrana
2.
Sci Rep ; 13(1): 16745, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798364

RESUMO

Pathophysiological response after acute myocardial infarction (AMI) is described as a three-stage model involving temporal phenotypic modifications of both immune cells and fibroblasts: a primary inflammatory phase, followed by a reparative phase and a fibrous scar maturation phase. Purinergic receptors, particularly the P2Y11 receptor, have been reported to be involved in the regulation of inflammation after ischemia and could act for the resolution of inflammation after AMI. For the first time, we characterized the immuno-inflammatory and P2Y11 expression profiles of peripheral blood mononuclear cells (PBMC) from AMI patients and analyzed the consequences of presenting these cells to cardiac fibroblasts in vitro. PBMC from 178 patients were collected at various times after reperfused ST-segment elevation AMI, from H0 to M12. Expression level of P2RY11 and genes involved in tolerogenic profile of dendritic cells and T cell polarization were evaluated by RT-PCR. P2Y11 protein expression was assessed by flow cytometry. PBMC and human cardiac fibroblasts (HCF) were cocultured and α-SMA/vimentin ratio was analyzed by flow cytometry. Within the first 48 h after AMI, expression levels of HMOX1, STAT3 and CD4 increased while IDO1 and TBX21/GATA3 ratio decreased. Concomitantly, the expression of P2RY11 increased in both T and B cells. In vitro, PBMC collected at H48 after AMI induced an increase in α-SMA/vimentin ratio in HCF. Our results suggest that human PBMC display an evolving inflammatory profile with reparative characteristics the first two days after AMI and secrete soluble mediators leading to the fibroblastic proteins modification, thus participating to myocardial fibrosis.


Assuntos
Leucócitos Mononucleares , Infarto do Miocárdio , Humanos , Leucócitos Mononucleares/metabolismo , Vimentina/metabolismo , Infarto do Miocárdio/metabolismo , Inflamação/metabolismo , Fenótipo , Fibroblastos/metabolismo
3.
Metabolomics ; 19(9): 83, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704888

RESUMO

INTRODUCTION: Ischemia-reperfusion injury (IRI) induces several perturbations that alter immediate kidney graft function after transplantation and may affect long-term graft outcomes. Given the IRI-dependent metabolic disturbances previously reported, we hypothesized that proximal transporters handling endo/exogenous substrates may be victims of such lesions. OBJECTIVES: This study aimed to determine the impact of hypoxia/reoxygenation on the human proximal transport system through two semi-targeted omics analyses. METHODS: Human proximal tubular cells were cultured in hypoxia (6 or 24 h), each followed by 2, 24 or 48-h reoxygenation. We investigated the transcriptomic modulation of transporters. Using semi-targeted LC-MS/MS profiling, we characterized the extra/intracellular metabolome. Statistical modelling was used to identify significant metabolic variations. RESULTS: The expression profile of transporters was impacted during hypoxia (y + LAT1 and OCTN2), reoxygenation (MRP2, PEPT1/2, rBAT, and OATP4C1), or in both conditions (P-gp and GLUT1). The P-gp and GLUT1 transcripts increased (FC (fold change) = 2.93 and 4.11, respectively) after 2-h reoxygenation preceded by 24-h hypoxia. We observed a downregulation (FC = 0.42) of y+LAT1 after 24-h hypoxia, and of PEPT2 after 24-h hypoxia followed by 2-h reoxygenation (FC = 0.40). Metabolomics showed that hypoxia altered the energetic pathways. However, intracellular metabolic homeostasis and cellular exchanges were promptly restored after reoxygenation. CONCLUSION: This study provides insight into the transcriptomic response of the tubular transporters to hypoxia/reoxygenation. No correlation was found between the expression of transporters and the metabolic variations observed. Given the complexity of studying the global tubular transport systems, we propose that further studies focus on targeted transporters.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Humanos , Transportador de Glucose Tipo 1 , Cromatografia Líquida , Metaboloma , Rim , Linhagem Celular , Hipóxia
4.
EMBO J ; 42(13): e112198, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37278161

RESUMO

There is growing evidence that ion channels are critically involved in cancer cell invasiveness and metastasis. However, the molecular mechanisms of ion signaling promoting cancer behavior are poorly understood and the complexity of the underlying remodeling during metastasis remains to be explored. Here, using a variety of in vitro and in vivo techniques, we show that metastatic prostate cancer cells acquire a specific Na+ /Ca2+ signature required for persistent invasion. We identify the Na+ leak channel, NALCN, which is overexpressed in metastatic prostate cancer, as a major initiator and regulator of Ca2+ oscillations required for invadopodia formation. Indeed, NALCN-mediated Na+ influx into cancer cells maintains intracellular Ca2+ oscillations via a specific chain of ion transport proteins including plasmalemmal and mitochondrial Na+ /Ca2+ exchangers, SERCA and store-operated channels. This signaling cascade promotes activity of the NACLN-colocalized proto-oncogene Src kinase, actin remodeling and secretion of proteolytic enzymes, thus increasing cancer cell invasive potential and metastatic lesions in vivo. Overall, our findings provide new insights into an ion signaling pathway specific for metastatic cells where NALCN acts as persistent invasion controller.


Assuntos
Neoplasias da Próstata , Sódio , Masculino , Humanos , Sódio/metabolismo , Canais Iônicos/metabolismo , Transporte de Íons , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
5.
Cell Immunol ; 384: 104658, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566700

RESUMO

Recent evidence showed that in response to elevated sodium dietary intakes, many body tissues retain Na+ ions for long periods of time and can reach concentrations up to 200 mM. This could modulate the immune system and be responsible for several diseases. However, studies brought contrasted results and the effects of external sodium on human dendritic cell (DC) responses to danger signals remain largely unknown. Considering their central role in triggering T cell response, we tested how NaCl-enriched medium influences human DCs properties. We found that DCs submitted to high extracellular Na+ concentrations up to 200 mM remain viable and maintain the expression of specific DC markers, however, their maturation, chemotaxis toward CCL19, production of pro-inflammatory cytokines and ROS in response to LPS were also partially inhibited. In line with these results, the T-cell allostimulatory capacity of DCs was also inhibited. Finally, our data indicate that high NaCl concentrations triggered the phosphorylation of SGK1 and ERK1/2 kinases. These results raised the possibility that the previously reported pro-inflammatory effects of high NaCl concentrations on T cells might be counterbalanced by a downregulation of DC activation.


Assuntos
Lipopolissacarídeos , Cloreto de Sódio , Humanos , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Diferenciação Celular , Cloretos/metabolismo , Cloretos/farmacologia , Células Dendríticas , Citocinas/metabolismo , Sódio/metabolismo , Sódio/farmacologia , Células Cultivadas
6.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743115

RESUMO

In the fight against prostate cancer (PCa), TRPM8 is one of the most promising clinical targets. Indeed, several studies have highlighted that TRPM8 involvement is key in PCa progression because of its impact on cell proliferation, viability, and migration. However, data from the literature are somewhat contradictory regarding the precise role of TRPM8 in prostatic carcinogenesis and are mostly based on in vitro studies. The purpose of this study was to clarify the role played by TRPM8 in PCa progression. We used a prostate orthotopic xenograft mouse model to show that TRPM8 overexpression dramatically limited tumor growth and metastasis dissemination in vivo. Mechanistically, our in vitro data revealed that TRPM8 inhibited tumor growth by affecting the cell proliferation and clonogenic properties of PCa cells. Moreover, TRPM8 impacted metastatic dissemination mainly by impairing cytoskeleton dynamics and focal adhesion formation through the inhibition of the Cdc42, Rac1, ERK, and FAK pathways. Lastly, we proved the in vivo efficiency of a new tool based on lipid nanocapsules containing WS12 in limiting the TRPM8-positive cells' dissemination at metastatic sites. Our work strongly supports the protective role of TRPM8 on PCa progression, providing new insights into the potential application of TRPM8 as a therapeutic target in PCa treatment.


Assuntos
Neoplasias da Próstata , Canais de Cátion TRPM , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Metástase Neoplásica/patologia , Próstata/patologia , Neoplasias da Próstata/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
7.
Front Aging Neurosci ; 14: 827263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663580

RESUMO

Various age-related diseases involve systemic inflammation, i.e. a stereotyped series of acute immune system responses, and aging itself is commonly associated with low-grade inflammation or inflamm'aging. Neuroinflammation is defined as inflammation-like processes inside the central nervous system, which this review discusses as a possible link between cardiovascular disease-related chronic inflammation and neurodegenerative diseases. To this aim, neuroinflammation mechanisms are first summarized, encompassing the cellular effectors and the molecular mediators. A comparative survey of the best-known physiological contexts of neuroinflammation (neurodegenerative diseases and transient ischemia) reveals some common features such as microglia activation. The recently published transcriptomic characterizations of microglia have pointed a marker core signature among neurodegenerative diseases, but also unraveled the discrepancies with neuroinflammations related with acute diseases of vascular origin. We next review the links between systemic inflammation and neuroinflammation, beginning with molecular features of respective pro-inflammatory cells, i.e. macrophages and microglia. Finally, we point out a gap of knowledge concerning the atherosclerosis-related neuroinflammation, which is for the most surprising given that atherosclerosis is established as a major risk factor for neurodegenerative diseases.

8.
BMC Cancer ; 22(1): 570, 2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597921

RESUMO

BACKGROUND/AIM: To develop and validate a nebulizer device for anti-cancer research on pressurized intraperitoneal aerosol supply in a preclinical peritoneal metastases (PM) rat model. MATERIAL AND METHODS: For aerosol generation, an ultrasonic nebulizer (USN) was modified. Aerosol analyses were performed ex-vivo by laser diffraction spectrometry (LDS). Intraperitoneal (IP) 99mtechnetium sodium pertechnetate (99mTc) aerosol distribution and deposition were quantified by in-vivo single photon emission computed tomography (SPECT/CT) and compared to liquid IP instillation of equivalent volume/doses of 99mTc with and without capnoperitoneum. PM was induced by IP injection of HCT116-Luc2 human colon cancer cells in immunosuppressed RNU rats. Tumor growth was monitored by bioluminescence imaging (BLI), 18F-FDG positron emission tomography (PET) and tissues examination at necropsy. RESULTS: The USN was able to establish a stable and reproducible capnoperitoneum at a pressure of 8 to 10 mmHg. LDS showed that the USN provides a polydisperse and monomodal aerosol with a volume-weighted diameter of 2.6 µm. At a CO2 flow rate of 2 L/min with an IP residence time of 3.9 s, the highest drug deposition efficiency was found to be 15 wt.-%. In comparison to liquid instillation, nebulization showed the most homogeneous IP spatial drug deposition. Compared to BLI, 18F-FDG-PET was more sensitive to detect smaller PM nodules measuring only 1-2 mm in diameter. BLI, 18F-FDG PET and necropsy analyses showed relevant PM in all animals. CONCLUSIONS: The USN together with the PM rat model are suitable for robust and species-specific preclinical pharmacological studies regarding intraperitoneal delivery of pressurized aerosolized drugs and cancer research.


Assuntos
Neoplasias do Colo , Neoplasias Peritoneais , Aerossóis , Animais , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Fluordesoxiglucose F18 , Humanos , Nebulizadores e Vaporizadores , Neoplasias Peritoneais/diagnóstico por imagem , Neoplasias Peritoneais/secundário , Ratos
9.
Cell Mol Life Sci ; 79(5): 254, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35451651

RESUMO

Previous studies in our laboratory have reported that miR-222-3p was a tumor-suppressive miRNA in OC. This study aims to further understand the regulatory role of miR-222-3p in OC and provide a new mechanism for its prevention and treatment. We first found that miR-222-3p inhibited the migration and proliferation of OC cells. Then, we observed CDK19 was highly expressed in OC and inversely correlated with miR-222-3p. Besides, we observed that miR-222-3p directly binds to the 3'-UTR of CDK19 and inhibits CDK19 translation, thus inhibiting OC cell migration and proliferation in vitro and repressed tumor growth in vivo. We also observed the inhibitory effect of Hotair on miR-222-3p in OC. In addition, Hotair could promote the proliferation and migration of OC cells in vitro and facilitate the growth and metastasis of tumors in vivo. Moreover, Hotair was positively correlated with CDK19 expression. These results suggest Hotair indirectly up-regulates CDK19 through sponging miR-222-3p, which enhances the malignant behavior of OC. This provides a further understanding of the mechanism of the occurrence and development of OC.


Assuntos
Quinases Ciclina-Dependentes , MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinases Ciclina-Dependentes/genética , Feminino , Humanos , MicroRNAs/genética , Neoplasias Ovarianas/genética , RNA Longo não Codificante/genética
10.
Oncogene ; 41(21): 2920-2931, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35411034

RESUMO

Metastatic progression is a major burden for breast cancer patients and is associated with the ability of cancer cells to overcome stressful conditions, such as nutrients deprivation and hypoxia, and to gain invasive properties. Autophagy and epithelial-to-mesenchymal transition are critical contributors to these processes. Here, we show that the P2X4 purinergic receptor is upregulated in breast cancer biopsies from patients and it is primarily localised in endolysosomes. We demonstrate that P2X4 enhanced invasion in vitro, as well as mammary tumour growth and metastasis in vivo. The pro-malignant role of P2X4 was mediated by the regulation of lysosome acidity, the promotion of autophagy and cell survival. Furthermore, the autophagic activity was associated with epithelial-to-mesenchymal transition (EMT), and this role of P2X4 was even more pronounced under metabolic challenges. Pharmacological and gene silencing of P2X4 inhibited both autophagy and EMT, whereas its rescue in knocked-down cells led to the restoration of the aggressive phenotype. Together, our results demonstrate a previously unappreciated role for P2X4 in regulating lysosomal functions and fate, promoting breast cancer progression and aggressiveness.


Assuntos
Neoplasias da Mama , Receptores Purinérgicos P2X4 , Autofagia/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
11.
Cancers (Basel) ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36612049

RESUMO

Colorectal cancer (CRC) is the second leading cause of death worldwide, with 0.9 million deaths per year. The metastatic stage of the disease is identified in about 20% of cases at the first diagnosis and is associated with low patient-survival rates. Voltage-gated sodium channels (NaV) are abnormally overexpressed in several carcinomas including CRC and are strongly associated with the metastatic behavior of cancer cells. Acidification of the extracellular space by Na+/H+ exchangers (NHE) contributes to extracellular matrix degradation and cell invasiveness. In this study, we assessed the expression levels of pore-forming α-subunits of NaV channels and NHE exchangers in tumor and adjacent non-malignant tissues from colorectal cancer patients, CRC cell lines and primary tumor cells. In all cases, SCN5A (gene encoding for NaV1.5) was overexpressed and positively correlated with cancer stage and poor survival prognosis for patients. In addition, we identified an anatomical differential expression of SCN5A and SLC9A1 (gene encoding for NHE-1) being particularly relevant for tumors that originated on the sigmoid colon epithelium. The functional activity of NaV1.5 channels was characterized in CRC cell lines and the primary cells of colon tumors obtained using tumor explant methodologies. Furthermore, we assessed the performance of two new small-molecule NaV1.5 inhibitors on the reduction of sodium currents, as well as showed that silencing SCN5A and SLC9A1 substantially reduced the 2D invasive capabilities of cancer cells. Thus, our findings show that both NaV1.5 and NHE-1 represent two promising targetable membrane proteins against the metastatic progression of CRC.

12.
FASEB J ; 35(10): e21838, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34582061

RESUMO

Inflammation, oxidative stress, and protease/protease inhibitor imbalance with excessive production of proteases are factors associated with pathogenesis of the chronic obstructive pulmonary disease (COPD). In this study, we report that kallikrein-related peptidase 5 (KLK5) is a crucial protease involved in extracellular matrix (ECM) remodeling and bronchial epithelial repair after injury. First, we showed that KLK5 degrades the basal layer formed by culture of primary bronchial epithelial cells from COPD or non-COPD patients. Also, exogenous KLK5 acted differently on BEAS-2B cells already engaged in epithelial-to-mesenchymal transition (EMT) or on 16HBE 14o- cells harboring epithelial characteristics. Indeed, by inducing EMT, KLK5 reduced BEAS-2B cell adherence to the ECM. This effect, neutralized by tissue factor pathway inhibitor 2, a kunitz-type serine protease inhibitor, was due to a direct proteolytic activity of KLK5 on E-cadherin, ß-catenin, fibronectin, and α5ß1 integrin. Thus, KLK5 may strengthen EMT mechanisms and promote the migration of cells by activating the mitogen-activated protein kinase signaling pathway required for this function. In contrast, knockdown of endogenous KLK5 in 16HBE14o- cells, accelerated wound healing repair after injury, and exogenous KLK5 addition delayed the closure repair. These data suggest that among proteases, KLK5 could play a critical role in airway remodeling events associated with COPD during exposure of the pulmonary epithelium to inhaled irritants or smoking and the inflammation process.


Assuntos
Remodelação das Vias Aéreas , Brônquios/patologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Calicreínas/metabolismo , Neoplasias Pulmonares/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Idoso , Antígenos CD/genética , Antígenos CD/metabolismo , Brônquios/metabolismo , Caderinas/genética , Caderinas/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Humanos , Calicreínas/genética , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais
13.
Cells ; 10(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209614

RESUMO

The SCN4B gene, coding for the NaVß4 subunit of voltage-gated sodium channels, was recently found to be expressed in normal epithelial cells and down-regulated in several cancers. However, its function in normal epithelial cells has not been characterized. In this study, we demonstrated that reducing NaVß4 expression in MCF10A non-cancer mammary epithelial cells generated important morphological changes observed both in two-dimensional cultures and in three-dimensional cysts. Most notably, the loss of NaVß4 induced a complete loss of epithelial organisation in cysts and increased proteolytic activity towards the extracellular matrix. Loss of epithelial morphology was associated with an increased degradation of ß-catenin, reduced E-cadherin expression and induction of mesenchymal markers N-cadherin, vimentin, and α-SMA expression. Overall, our results suggest that Navß4 may participate in the maintenance of the epithelial phenotype in mammary cells and that its downregulation might be a determining step in early carcinogenesis.


Assuntos
Células Epiteliais/metabolismo , Glândulas Mamárias Animais/citologia , Subunidades Proteicas/metabolismo , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/metabolismo , Animais , Linhagem Celular , Polaridade Celular , Regulação para Baixo , Células Epiteliais/citologia , Feminino , Humanos , Mesoderma/metabolismo , Fenótipo , Proteólise , beta Catenina/metabolismo
15.
Int J Mol Sci ; 22(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066832

RESUMO

Implantable cardiac defibrillators (ICDs) are recommended to prevent the risk of sudden cardiac death. However, shocks are associated with an increased mortality with a dose response effect, and a strategy of reducing electrical therapy burden improves the prognosis of implanted patients. We review the mechanisms of defibrillation and its consequences, including cell damage, metabolic remodeling, calcium metabolism anomalies, and inflammatory and pro-fibrotic remodeling. Electrical shocks do save lives, but also promote myocardial stunning, heart failure, and pro-arrhythmic effects as seen in electrical storms. Limiting unnecessary implantations and therapies and proposing new methods of defibrillation in the future are recommended.


Assuntos
Desfibriladores Implantáveis , Eletrochoque , Miocárdio/patologia , Animais , Humanos , Inflamação/patologia , Estresse Oxidativo , Proteômica
16.
Purinergic Signal ; 17(3): 331-344, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33987781

RESUMO

The P2X7 receptor, originally known as the P2Z receptor due to its distinctive functional properties, has a structure characteristic of the ATP-gated ion channel P2X receptor family. The P2X7 receptor is an important mediator of ATP-induced purinergic signalling and is involved the pathogenesis of numerous conditions as well as in the regulation of diverse physiological functions. Functional characterisations, in conjunction with site-directed mutagenesis, molecular modelling, and, recently, structural determination, have provided significant insights into the structure-function relationships of the P2X7 receptor. This review discusses the current understanding of the structural basis for the functional properties of the P2X7 receptor.


Assuntos
Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Líquido Extracelular/metabolismo , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Humanos , Estrutura Secundária de Proteína , Receptores Purinérgicos P2X7/genética
17.
Eur J Med Chem ; 218: 113258, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33813152

RESUMO

Herein, we report the design, synthesis and evaluation of novel bioinspired imidazo[1,2-a:4,5c']dipyridines. The structural optimization identified four anti-proliferative compounds. Compounds 11, 18, 19 and 20 exhibited excellent anticancer activities in vitro with IC50 of 0.4-5 µM against three human cancer cell lines (MDA-MB-468, MDA-MB-435s and MDA-MB-231). These four compounds induced apoptosis in MDA-MB-231 cells in a dose-dependent manner, targeting different apoptotic proteins expression: 11 increased the expression of pro-apoptotic Bax protein while 18-20 reduced the level of anti-apoptotic Bcl-2 protein. Compounds 18 and 19 also reduced MDA-MB-231 cells proliferation as measured by Ki-67 staining. Furthermore, compounds were also tested for the ability to inhibit cell migration in the highly aggressive human MDA-MB-435s cell line. Six compounds of this series (8, 15, 18, 22, 23, 24) inhibited cell migration by 41-50% while four compounds (20, 25, 27, 30) inhibited the migration by 53-62% in wound-healing experiments. Interestingly, compound 20 presented both antiproliferative and anti-migration activities and might be a promising anti-metastatic agent for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
iScience ; 24(4): 102270, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33817575

RESUMO

Voltage-gated sodium (NaV) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, and cervix, whereas they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both in vitro and in vivo, whereas their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes NaV channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing NaV-inhibitors or developing new pharmacological and nutritional interventions.

19.
Brain Behav Immun ; 94: 159-174, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609652

RESUMO

BACKGROUND: Several lines of evidence suggest that neuroinflammation might be a key neurobiological mechanism of depression. In particular, the P2X7 receptor (P2X7R), an ATP-gated ion channel involved in activation of the pro-inflammatory interleukin IL-1ß, has been shown to be a potential new pharmacological target in depression. The aim of this study was to explore the impact of unpredictable chronic mild stress (UCMS) on behavioural changes, hippocampal neurogenesis, and cellular characterisation of brain immune cells, in P2X7R Knock-Out (KO) mice. METHODS: P2X7R KO and wild-type (WT) mice were subjected to a 6-week UCMS protocol and received a conventional oral antidepressant (15 mg.kg-1 fluoxetine) or water per os. The mice then underwent behavioural tests consisting of the tail suspension test (TST), the elevated plus maze (EPM) test, the open field test, the splash test and the nest building test (week 7). Doublecortin immunostaining (DCX) of brain slices was used to assess neurogenesis in the dentate gyrus. Iba1 and TMEM119 immunostaining was used to characterise brain immune cells, Iba1 as a macrophage marker (including microglial cells) and TMEM119 as a potential specific resident microglial cells marker. RESULTS: After a 6-week UCMS exposure, P2X7R KO mice exhibited less deterioration of their coat state, spent a significantly smaller amount of time immobile in the TST and spent a larger amount of time in the open arms of the EPM. As expected, adult ventral hippocampal neurogenesis was significantly decreased by UCMS in WT mice, while P2X7R KO mice maintained ventral hippocampal neurogenesis at similar levels in both control and UCMS conditions. In stress-related brain regions, P2X7R KO mice also exhibited less recruitment of Iba1+/TMEM119+ and Iba1+/TMEM119- cells in the brain. The ratio between these two staining patterns revealed that brain immune cells were mostly composed of Iba1+/TMEM119+ cells (87 to 99%), and this ratio was affected neither by P2X7R genetic depletion nor by antidepressant treatment. DISCUSSION: Behavioural patterns, neurogenesis levels and density of brain immune cells in P2X7R KO mice after exposure to UCMS significantly differed from control conditions. Brain immune cells were mostly increased in brain regions known to be sensitive to UCMS exposure in WT but not in P2X7R KO mice. Considering Iba1+/TMEM119- staining might characterize peripheral immune cells, the ratio between Iba1+/TMEM119+ cells and IBA1+/TMEM119- cells, suggests that the rate of peripheral immune cells recruitment may not be modified neither by P2X7R gene expression nor by antidepressant treatment.


Assuntos
Depressão , Estresse Psicológico , Animais , Antidepressivos , Modelos Animais de Doenças , Proteína Duplacortina , Hipocampo , Camundongos , Camundongos Knockout , Receptores Purinérgicos P2X7/genética
20.
Front Biosci (Landmark Ed) ; 26(12): 1737-1745, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34994186

RESUMO

It is well-known that extracellular ATP acts as an autocrine/paracrine signal to regulate cell functions by inducing intracellular Ca2+ signalling through its cognate receptors, namely, the ligand-gated ion channel P2X receptors that mediate Ca2+ influx and/or the Gq/11-coupled P2Y receptors that link to Ca2+ release from the ER. The reduction in ER Ca2+ can trigger further extracellular Ca2+ entry by activating the store-operated Ca2+ (SOC) channel. Mesenchymal stem cells (MSC) play an important role in the homeostasis of residing tissues and have promising applications in regenerative medicines. MSC can release ATP spontaneously or in response to diverse stimuli, and express multiple P2X and Gq/11-coupled P2Y receptors that participate in ATP-induced Ca2+ signalling and regulate cell function. There is increasing evidence to show the contribution of the SOC channel in ATP-induced Ca2+ signalling in MSC. In this mini-review, we discuss the current understanding of the expression of the SOC channel in MSC and its potential role in mediating ATP-induced Ca2+ signalling and regulation of MSC differentiation, proliferation and migration.


Assuntos
Células-Tronco Mesenquimais , Receptores Purinérgicos P2 , Trifosfato de Adenosina , Cálcio/metabolismo , Sinalização do Cálcio , Células-Tronco Mesenquimais/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA