Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(12): e3002397, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38051702

RESUMO

Since they emerged approximately 125 million years ago, flowering plants have evolved to dominate the terrestrial landscape and survive in the most inhospitable environments on earth. At their core, these adaptations have been shaped by changes in numerous, interconnected pathways and genes that collectively give rise to emergent biological phenomena. Linking gene expression to morphological outcomes remains a grand challenge in biology, and new approaches are needed to begin to address this gap. Here, we implemented topological data analysis (TDA) to summarize the high dimensionality and noisiness of gene expression data using lens functions that delineate plant tissue and stress responses. Using this framework, we created a topological representation of the shape of gene expression across plant evolution, development, and environment for the phylogenetically diverse flowering plants. The TDA-based Mapper graphs form a well-defined gradient of tissues from leaves to seeds, or from healthy to stressed samples, depending on the lens function. This suggests that there are distinct and conserved expression patterns across angiosperms that delineate different tissue types or responses to biotic and abiotic stresses. Genes that correlate with the tissue lens function are enriched in central processes such as photosynthetic, growth and development, housekeeping, or stress responses. Together, our results highlight the power of TDA for analyzing complex biological data and reveal a core expression backbone that defines plant form and function.


Assuntos
Magnoliopsida , Magnoliopsida/genética , Plantas/genética , Estresse Fisiológico/genética , Folhas de Planta/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética
2.
Plant Methods ; 19(1): 83, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37563651

RESUMO

BACKGROUND: Tar spot of corn is a significant and spreading disease in the continental U.S. and Canada caused by the obligate biotrophic fungus Phyllachora maydis. As of 2023, tar spot had been reported in 18 U.S. states and one Canadian Province. The symptoms of tar spot include chlorotic flecking followed by the formation of black stromata where conidia and ascospores are produced. Advancements in research and management for tar spot have been limited by a need for a reliable method to inoculate plants to enable the study of the disease. The goal of this study was to develop a reliable method to induce tar spot in controlled conditions. RESULTS: We induced infection of corn by P. maydis in 100% of inoculated plants with a new inoculation method. This method includes the use of vacuum-collection tools to extract ascospores from field-infected corn leaves, application of spores to leaves, and induction of the disease in the dark at high humidity and moderate temperatures. Infection and disease development were consistently achieved in four independent experiments on different corn hybrids and under different environmental conditions in a greenhouse and growth chamber. Disease induction was impacted by the source and storage conditions of spores, as tar spot was not induced with ascospores from leaves stored dry at 25 ºC for 5 months but was induced using ascospores from infected leaves stored at -20 ºC for 5 months. The time from inoculation to stromata formation was 10 to 12 days and ascospores were present 19 days after inoculation throughout our experiments. In addition to providing techniques that enable in-vitro experimentation, our research also provides fundamental insights into the conditions that favor tar spot epidemics. CONCLUSIONS: We developed a method to reliably inoculate corn with P. maydis. The method was validated by multiple independent experiments in which infection was induced in 100% of the plants, demonstrating its consistency in controlled conditions. This new method facilitates research on tar spot and provides opportunities to study the biology of P. maydis, the epidemiology of tar spot, and for identifying host resistance.

3.
Mol Plant Microbe Interact ; 36(7): 411-424, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36853195

RESUMO

Tar spot is a devasting corn disease caused by the obligate fungal pathogen Phyllachora maydis. Since its initial identification in the United States in 2015, P. maydis has become an increasing threat to corn production. Despite this, P. maydis has remained largely understudied at the molecular level, due to difficulties surrounding its obligate lifestyle. Here, we generated a significantly improved P. maydis nuclear and mitochondrial genome, using a combination of long- and short-read technologies, and also provide the first transcriptomic analysis of primary tar spot lesions. Our results show that P. maydis is deficient in inorganic nitrogen utilization, is likely heterothallic, and encodes for significantly more protein-coding genes, including secreted enzymes and effectors, than previous determined. Furthermore, our expression analysis suggests that, following primary tar spot lesion formation, P. maydis might reroute carbon flux away from DNA replication and cell division pathways and towards pathways previously implicated in having significant roles in pathogenicity, such as autophagy and secretion. Together, our results identified several highly expressed unique secreted factors that likely contribute to host recognition and subsequent infection, greatly increasing our knowledge of the biological capacity of P. maydis, which have much broader implications for mitigating tar spot of corn. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Doenças das Plantas , Zea mays , Estados Unidos , Zea mays/genética , Zea mays/microbiologia , Doenças das Plantas/microbiologia , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA