Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anim Sci Technol ; 65(6): 1180-1193, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38616881

RESUMO

Most carcass and meat quality traits are moderate to highly heritable, indicating that they can be improved through selection. Genetic evaluation for these types of traits is performed using performance data obtained from commercial and progeny testing evaluation. The performance data from commercial farms are available in large volume, however, some drawbacks have been observed. The drawback of the commercial data is mainly due to sorting of animals based on live weight prior to slaughter, and this could lead to bias in the genetic evaluation of later measured traits such as carcass traits. The current study has two components to address the drawback of the commercial data. The first component of the study aimed to estimate genetic parameters for carcass and meat quality traits in Korean Hanwoo cattle using a large sample size of industry-based carcass performance records (n = 469,002). The second component of the study aimed to describe the impact of sorting animals into different contemporary groups based on an early measured trait and then examine the effect on the genetic evaluation of subsequently measured traits. To demonstrate our objectives, we used real performance data to estimate genetic parameters and simulated data was used to assess the bias in genetic evaluation. The results of our first study showed that commercial data obtained from slaughterhouses is a potential source of carcass performance data and useful for genetic evaluation of carcass traits to improve beef cattle performance. However, we observed some harvesting effect which leads to bias in genetic evaluation of carcass traits. This is mainly due to the selection of animal based on their body weight before arrival to slaughterhouse. Overall, the non-random allocation of animals into a contemporary group leads to a biased estimated breeding value in genetic evaluation, the severity of which increases when the evaluation traits are highly correlated.

2.
J Anim Sci Technol ; 63(4): 759-765, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34447953

RESUMO

Recently, summer temperatures have frequently been abnormal in Korea owing to global warming. In summer, a decrease in feed intake rate and biological activity were observed in Hanwoo (Korean Native Cattle), leading to lower production rates in the industry. However, the precise scale of damage was not reported as with other animals of economic value. This study was conducted to investigate the effects of birth season on birth weight in Hanwoo. Data were collected from 100 local breeding farms from 2016 to 2019. A total of 41,081 Hanwoo calves were classified and analyzed by sex, year, month, and season (March-May, spring; June-August, summer; September-November, fall; and December-February, winter) of birth. The birth weight of Hanwoo calves differed according to birth month. The average birth weight of male calves was 30.47 kg and that of female calves was 28.16 kg. Hanwoo birth weight was the highest in March-born calves and the lowest in July-born calves. The birth weights of calves born in February, March, April, November, and December were significantly larger than those of calves born in July. In addition, the birth weight of Hanwoo calves from the summer was significantly lower than that of calves born in other seasons. Furthermore, Hanwoo steer slaughter age showed a negative correlation, whereas carcass weight had a positive correlation with birth weight. In the beef cattle industry, birth weight is a very important economic characteristic that is related to growth rate. These data will contribute toward planning the reproduction of Hanwoo and analysis of changes in characteristics of economic value owing to high temperatures.

3.
Genomics Inform ; 16(1): 10-13, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29618182

RESUMO

Until now microsatellite (MS) have been a popular choice of markers for parentage verification. Recently many countries have moved or are in process of moving from MS markers to single nucleotide polymorphism (SNP) markers for parentage testing. FAO-ISAG has also come up with a panel of 200 SNPs to replace the use of MS markers in parentage verification. However, in many countries most of the animals were genotyped by MS markers till now and the sudden shift to SNP markers will render the data of those animals useless. As National Institute of Animal Science in South Korea plans to move from standard ISAG recommended MS markers to SNPs, it faces the dilemma of exclusion of old animals that were genotyped by MS markers. Thus to facilitate this shift from MS to SNPs, such that the existing animals with MS data could still be used for parentage verification, this study was performed. In the current study we performed imputation of MS markers from the SNPs in the 500-kb region of the MS marker on either side. This method will provide an easy option for the labs to combine the data from the old and the current set of animals. It will be a cost efficient replacement of genotyping with the additional markers. We used 1,480 Hanwoo animals with both the MS data and SNP data to impute in the validation animals. We also compared the imputation accuracy between BovineSNP50 and BovineHD BeadChip. In our study the genotype concordance of 40% and 43% was observed in the BovineSNP50 and BovineHD BeadChip respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA