Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pharm Pharmacol ; 76(3): 183-200, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38280221

RESUMO

OBJECTIVES: Despite significant advancements in modern medicine, effective hepatoprotective medication with minimal side effects is still lacking. In this context. Tinospora cordifolia, an Indian Ayurvedic liana, has attracted much attention. KEY FINDINGS: Traditionally, T. cordifolia has been found to be effective in the treatment of jaundice; according to the literature, T. cordifolia is a hepatoprotective agent, and the CCl4 model is the most frequently used to evaluate its potential. Its hepatoprotective effects might be attributed to alkaloids (berberine, palmatine, and jatrorrhizine) and sinapic acid. Berberine decreases inflammation by inhibiting the proinflammatory cascade triggered by TNF-α and reduces nitrosative stress by inhibiting iNOS. T. cordifolia also exhibits anticancer, anti-inflammatory, antimicrobial, antioxidant, and other activities; it is safe at concentrations up to 2000 mg/kg. Its biological action can be attributed to polyphenols, alkaloids, steroids, terpenoids, and glycosides. T. cordifolia has also been found to be an active ingredient in several polyherbal formulations used to treat chemical-mediated hepatotoxicity. CONCLUSION: T. cordifolia's hepatoprotective effects are mediated by the inhibition of lipid peroxidation, the management of oxidative stress, and other factors. T. cordifolia can be used to manage liver disorders and as a hepatoprotective supplement in the food industry. The bioprospecting of its alkaloids can lead to the development of novel formulations against hepatic ailments.


Assuntos
Berberina , Tinospora , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Suplementos Nutricionais
2.
Oxid Med Cell Longev ; 2021: 3155962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737844

RESUMO

Nanotechnology is gaining significant attention, with numerous biomedical applications. Silver in wound dressings, copper oxide and silver in antibacterial preparations, and zinc oxide nanoparticles as a food and cosmetic ingredient are common examples. However, adverse effects of nanoparticles in humans and the environment from extended exposure at varied concentrations have yet to be established. One of the drawbacks of employing nanoparticles is their tendency to cause oxidative stress, a significant public health concern with life-threatening consequences. Cardiovascular, renal, and respiratory problems and diabetes are among the oxidative stress-related disorders. In this context, phytoantioxidant functionalized nanoparticles could be a novel and effective alternative. In addition to performing their intended function, they can protect against oxidative damage. This review was designed by searching through various websites, books, and articles found in PubMed, Science Direct, and Google Scholar. To begin with, oxidative stress, its related diseases, and the mechanistic basis of oxidative damage caused by nanoparticles are discussed. One of the main mechanisms of action of nanoparticles was unearthed to be oxidative stress, which limits their use in humans. Secondly, the role of phytoantioxidant functionalized nanoparticles in oxidative damage prevention is critically discussed. The parameters for the characterization of nanoparticles were also discussed. The majority of silver, gold, iron, zinc oxide, and copper nanoparticles produced utilizing various plant extracts were active free radical scavengers. This potential is linked to several surface fabricated phytoconstituents, such as flavonoids and phenols. These phytoantioxidant functionalized nanoparticles could be a better alternative to nanoparticles prepared by other existing approaches.


Assuntos
Antioxidantes/farmacologia , Sequestradores de Radicais Livres/farmacologia , Nanopartículas Metálicas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Antioxidantes/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Compostos Fitoquímicos/química
3.
Vaccines (Basel) ; 9(10)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34696237

RESUMO

SARS-CoV-2 claimed numerous lives and put nations on high alert. The lack of antiviral medications and the small number of approved vaccines, as well as the recurrence of adverse effects, necessitates the development of novel treatment ways to combat COVID-19. In this context, using databases such as PubMed, Google Scholar, and Science Direct, we gathered information about nanotechnology's involvement in the prevention, diagnosis and virus-like particle vaccine development. This review revealed that various nanomaterials like gold, polymeric, graphene and poly amino ester with carboxyl group coated magnetic nanoparticles have been explored for the fast detection of SARS-CoV-2. Personal protective equipment fabricated with nanoparticles, such as gloves, masks, clothes, surfactants, and Ag, TiO2 based disinfectants played an essential role in halting COVID-19 transmission. Nanoparticles are used not only in vaccine delivery, such as lipid nanoparticles mediated transport of mRNA-based Pfizer and Moderna vaccines, but also in the development of vaccine as the virus-like particles elicit an immune response. There are now 18 virus-like particle vaccines in pre-clinical development, with one of them, developed by Novavax, reported being in phase 3 trials. Due to the probability of upcoming COVID-19 waves, and the rise of new diseases, the future relevance of virus-like particles is imperative. Furthermore, psychosocial variables linked to vaccine reluctance constitute a critical problem that must be addressed immediately to avert pandemic.

4.
Plants (Basel) ; 10(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071621

RESUMO

Drug resistance among microbial pathogens and oxidative stress caused by reactive oxygen species are two of the most challenging global issues. Firstly, drug-resistant pathogens cause several fatalities every year. Secondly aging and a variety of diseases, such as cardiovascular disease and cancer, are associated with free radical generated oxidative stress. The treatments currently available are limited, ineffective, or less efficient, so there is an immediate need to tackle these issues by looking for new therapies to resolve resistance and neutralize the harmful effects of free radicals. In the 21st century, the best way to save humans from them could be by using plants as well as their bioactive constituents. In this specific context, Jasminum is a major plant genus that is used in the Ayurvedic system of medicine to treat a variety of ailments. The information in this review was gathered from a variety of sources, including books, websites, and databases such as Science Direct, PubMed, and Google Scholar. In this review, a total of 14 species of Jasminum have been found to be efficient and effective against a wide variety of microbial pathogens. In addition, 14 species were found to be active free radical scavengers. The review is also focused on the disorders related to oxidative stress, and it was concluded that Jasminum grandiflorum and J. sambac normalized various parameters that were elevated by free radical generation. Alkaloids, flavonoids (rutoside), terpenes, phenols, and iridoid glucosides are among the main phytoconstituents found in various Jasminum species. Furthermore, this review also provides insight into the mechanistic basis of drug resistance, the generation of free radicals, and the role of Jasminum plants in combating resistance and neutralizing free radicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA