Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34409938

RESUMO

For a sperm to successfully fertilize an egg, it must first undergo capacitation in the female reproductive tract and later undergo acrosomal reaction (AR) upon encountering an egg surrounded by its vestment. How premature AR is avoided despite rapid surges in signaling cascades during capacitation remains unknown. Using a combination of conditional knockout (cKO) mice and cell-penetrating peptides, we show that GIV (CCDC88A), a guanine nucleotide-exchange modulator (GEM) for trimeric GTPases, is highly expressed in spermatocytes and is required for male fertility. GIV is rapidly phosphoregulated on key tyrosine and serine residues in human and murine spermatozoa. These phosphomodifications enable GIV-GEM to orchestrate two distinct compartmentalized signaling programs in the sperm tail and head; in the tail, GIV enhances PI3K→Akt signals, sperm motility and survival, whereas in the head it inhibits cAMP surge and premature AR. Furthermore, GIV transcripts are downregulated in the testis and semen of infertile men. These findings exemplify the spatiotemporally segregated signaling programs that support sperm capacitation and shed light on a hitherto unforeseen cause of infertility in men.


Assuntos
Fertilidade , Regulação da Expressão Gênica , Proteínas dos Microfilamentos/genética , Transdução de Sinais/genética , Capacitação Espermática/genética , Proteínas de Transporte Vesicular/genética , Animais , Regulação para Baixo , Feminino , Fertilidade/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Espermatócitos/metabolismo , Espermatozoides/metabolismo , Testículo/citologia , Testículo/patologia
2.
iScience ; 23(7): 101246, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32590327

RESUMO

Polarized exocytosis is a fundamental process by which membranes and cargo proteins are delivered to the cell surface with precise spatial control. Although the need for the octameric exocyst complex is conserved from yeast to humans, what imparts spatial control is known only in yeast, i.e., a polarity scaffold called Bem1p. We demonstrate here that the mammalian scaffold protein, GIV/Girdin, fulfills the key criteria and functions of its yeast counterpart Bem1p; both bind Exo70 proteins via similar short-linear interaction motifs, and each prefers its evolutionary counterpart. Selective disruption of the GIV⋅Exo-70 interaction derails the delivery of the metalloprotease MT1-MMP to invadosomes and impairs collagen degradation and haptotaxis through basement membrane matrix. GIV's interacting partners reveal other components of polarized exocytosis in mammals. Findings expose how the exocytic functions aid GIV's pro-metastatic functions and how signal integration via GIV may represent an evolutionary advancement of the exocytic process in mammals.

3.
iScience ; 23(6): 101209, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32535026

RESUMO

Cells perceive and respond to the extracellular matrix via integrin receptors; their dysregulation has been implicated in inflammation and cancer metastasis. Here we show that a guanine nucleotide-exchange modulator of trimeric-GTPase Gαi, GIV (a.k.a Girdin), directly binds the integrin adaptor Kindlin-2. A non-canonical short linear motif within the C terminus of GIV binds Kindlin-2-FERM3 domain at a site that is distinct from the binding site for the canonical NPxY motif on the -integrin tail. Binding of GIV to Kindlin-2 allosterically enhances Kindlin-2's affinity for ß1-integrin. Consequently, integrin activation and clustering are maximized, which augments cell adhesion, spreading, and invasion. Findings elucidate how the GIV•Kindlin-2 complex has a 2-fold impact: it allosterically synergizes integrin activation and enables ß1-integrins to indirectly access and modulate trimeric GTPases via the complex. Furthermore, Cox proportional-hazard models on tumor transcriptomics provide trans-scale evidence of synergistic interactions between GIV•Kindlin-2•ß1-integrin on time to progression to metastasis.

4.
iScience ; 10: 53-65, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30500482

RESUMO

Molecular imaging of metastatic "potential" is an unvanquished challenge. To engineer biosensors that can detect and measure the metastatic "potential" of single living cancer cells, we carried out a comprehensive analysis of the pan-cancer phosphoproteome to search for actin remodelers required for cell migration, which are enriched in cancers but excluded in normal cells. Only one phosphoprotein emerged, tyr-phosphorylated CCDC88A (GIV/Girdin), a bona fide metastasis-related protein across a variety of solid tumors. We designed multi-modular biosensors that are partly derived from GIV, and because GIV integrates prometastatic signaling by multiple oncogenic receptors, we named them "'integrators of metastatic potential (IMP)." IMPs captured the heterogeneity of metastatic potential within primary lung and breast tumors at steady state, detected those few cells that have acquired the highest metastatic potential, and tracked their enrichment during metastasis. These findings provide proof of concept that IMPs can measure the diversity and plasticity of metastatic potential of tumor cells in a sensitive and unbiased way.

5.
Bioorg Med Chem ; 25(12): 3206-3214, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28433513

RESUMO

New microtubule depolymerizing agents with potent cytotoxic activities have been prepared with a 5-cyano or 5-oximino group attached to a pyrrole core. The utilization of ortho activation of a bromopyrrole ester to facilitate successful Suzuki-Miyaura cross-coupling reactions was a key aspect of the synthetic methodology. This strategy allows for control of regiochemistry with the attachment of four completely different groups at the 2, 3, 4 and 5 positions of the pyrrole scaffold. Biological evaluations and molecular modeling studies are reported for these examples.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Pirróis/química , Pirróis/farmacologia , Animais , Antineoplásicos/síntese química , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Halogenação , Humanos , Microtúbulos/metabolismo , Microtúbulos/patologia , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Pirróis/síntese química , Ratos
6.
Blood ; 129(23): 3100-3110, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28416510

RESUMO

Healthy blood neutrophils are functionally quiescent in the bloodstream, have a short lifespan, and exit the circulation to carry out innate immune functions, or undergo rapid apoptosis and macrophage-mediated clearance to mitigate host tissue damage. Limitation of unnecessary intravascular neutrophil activation is also important to prevent serious inflammatory pathologies. Because neutrophils become easily activated after purification, we carried out ex vivo comparisons with neutrophils maintained in whole blood. We found a difference in activation state, with purified neutrophils showing signs of increased reactivity: shedding of l-selectin, CD11b upregulation, increased oxidative burst, and faster progression to apoptosis. We discovered that erythrocytes suppressed neutrophil activation ex vivo and in vitro, including reduced l-selectin shedding, oxidative burst, chemotaxis, neutrophil extracellular trap formation, bacterial killing, and induction of apoptosis. Selective and specific modification of sialic acid side chains on erythrocyte surfaces with mild sodium metaperiodate oxidation followed by aldehyde quenching with 4-methyl-3-thiosemicarbazide reduced neutrophil binding to erythrocytes and restored neutrophil activation. By enzyme-linked immunosorbent assay and immunofluorescence, we found that glycophorin A, the most abundant sialoglycoprotein on erythrocytes, engaged neutrophil Siglec-9, a sialic acid-recognizing receptor known to dampen innate immune cell activation. These studies demonstrate a previously unsuspected role for erythrocytes in suppressing neutrophils ex vivo and in vitro and help explain why neutrophils become easily activated after separation from whole blood. We propose that a sialic acid-based "self-associated molecular pattern" on erythrocytes also helps maintain neutrophil quiescence in the bloodstream. Our findings may be relevant to some prior experimental and clinical studies of neutrophils.


Assuntos
Antígenos CD/imunologia , Antígenos CD/metabolismo , Eritrócitos/imunologia , Eritrócitos/metabolismo , Glicoforinas/imunologia , Glicoforinas/metabolismo , Ativação de Neutrófilo/imunologia , Ativação de Neutrófilo/fisiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Apoptose , Atividade Bactericida do Sangue , Antígeno CD11b/sangue , Separação Celular , Humanos , Técnicas In Vitro , Selectina L/sangue , Neutrófilos/citologia
7.
Curr Protoc Chem Biol ; 8(4): 265-298, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27925669

RESUMO

Canonical signal transduction via heterotrimeric G proteins is spatiotemporally restricted, i.e., triggered exclusively at the plasma membrane, only by agonist activation of G protein-coupled receptors via a finite process that is terminated within a few hundred milliseconds. Recently, a rapidly emerging paradigm has revealed a noncanonical pathway for activation of heterotrimeric G proteins via the nonreceptor guanidine-nucleotide exchange factor, GIV/Girdin. Biochemical, biophysical, and functional studies evaluating this pathway have unraveled its unique properties and distinctive spatiotemporal features. As in the case of any new pathway/paradigm, these studies first required an in-depth optimization of tools/techniques and protocols, governed by rationale and fundamentals unique to the pathway, and more specifically to the large multimodular GIV protein. Here we provide the most up-to-date overview of protocols that have generated most of what we know today about noncanonical G protein activation by GIV and its relevance in health and disease. © 2016 by John Wiley & Sons, Inc.


Assuntos
Imunofluorescência/métodos , Fatores de Troca do Nucleotídeo Guanina/análise , Immunoblotting/métodos , Imunoprecipitação/métodos , Animais , Biofísica/métodos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Transdução de Sinais
8.
Molecules ; 21(12)2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27918450

RESUMO

While evaluating a large library of compounds designed to inhibit microtubule polymerization, we identified four compounds that have unique effects on microtubules. These compounds cause mixed effects reminiscent of both microtubule depolymerizers and stabilizers. Immunofluorescence evaluations showed that each compound initially caused microtubule depolymerization and, surprisingly, with higher concentrations, microtubule bundles were also observed. There were subtle differences in the propensity to cause these competing effects among the compounds with a continuum of stabilizing and destabilizing effects. Tubulin polymerization experiments confirmed the differential effects and, while each of the compounds increased the initial rate of tubulin polymerization at high concentrations, total tubulin polymer was not enhanced at equilibrium, likely because of the dueling depolymerization effects. Modeling studies predict that the compounds bind to tubulin within the colchicine site and confirm that there are differences in their potential interactions that might underlie their distinct effects on microtubules. Due to their dual properties of microtubule stabilization and destabilization, we propose the name Janus for these compounds after the two-faced Roman god. The identification of synthetically tractable, small molecules that elicit microtubule stabilizing effects is a significant finding with the potential to identify new mechanisms of microtubule stabilization.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diaminas/química , Diaminas/síntese química , Microtúbulos/efeitos dos fármacos , Moduladores de Tubulina/química , Tubulina (Proteína)/química , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Células HeLa , Humanos , Microtúbulos/metabolismo , Modelos Moleculares , Tubulina (Proteína)/metabolismo
9.
Elife ; 52016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27813479

RESUMO

Loss of epithelial polarity impacts organ development and function; it is also oncogenic. AMPK, a key sensor of metabolic stress stabilizes cell-cell junctions and maintains epithelial polarity; its activation by Metformin protects the epithelial barrier against stress and suppresses tumorigenesis. How AMPK protects the epithelium remains unknown. Here, we identify GIV/Girdin as a novel effector of AMPK, whose phosphorylation at a single site is both necessary and sufficient for strengthening mammalian epithelial tight junctions and preserving cell polarity and barrier function in the face of energetic stress. Expression of an oncogenic mutant of GIV (cataloged in TCGA) that cannot be phosphorylated by AMPK increased anchorage-independent growth of tumor cells and helped these cells to evade the tumor-suppressive action of Metformin. This work defines a fundamental homeostatic mechanism by which the AMPK-GIV axis reinforces cell junctions against stress-induced collapse and also provides mechanistic insight into the tumor-suppressive action of Metformin.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas dos Microfilamentos/metabolismo , Junções Íntimas/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional
10.
J Cell Sci ; 129(17): 3282-94, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27422099

RESUMO

Axonal growth and targeting are fundamental to the organization of the nervous system, and require active engagement of the cytoskeleton. Polymerization and stabilization of axonal microtubules is central to axonal growth and maturation of neuronal connectivity. Studies have suggested that members of the tubulin polymerization promoting protein (TPPP, also known as P25α) family are involved in cellular process extension. However, no in vivo knockout data exists regarding its role in axonal growth during development. Here, we report the characterization of Ringmaker (Ringer; CG45057), the only Drosophila homolog of long p25α proteins. Immunohistochemical analyses indicate that Ringer expression is dynamically regulated in the embryonic central nervous system (CNS). ringer-null mutants show cell misplacement, and errors in axonal extension and targeting. Ultrastructural examination of ringer mutants revealed defective microtubule morphology and organization. Primary neuronal cultures of ringer mutants exhibit defective axonal extension, and Ringer expression in cells induced microtubule stabilization and bundling into rings. In vitro assays showed that Ringer directly affects tubulin, and promotes microtubule bundling and polymerization. Together, our studies uncover an essential function of Ringer in axonal extension and targeting through proper microtubule organization.


Assuntos
Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Desenvolvimento Embrionário , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/química , Drosophila melanogaster/ultraestrutura , Embrião não Mamífero/anormalidades , Embrião não Mamífero/metabolismo , Loci Gênicos , Microtúbulos/ultraestrutura , Mutação/genética , Proteínas do Tecido Nervoso/química , Polimerização
11.
J Med Chem ; 59(12): 5752-65, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27213719

RESUMO

The design, synthesis, and biological evaluations of eight 4-substituted 5-methyl-furo[2,3-d]pyrimidines are reported. Synthesis involved N(4)-alkylation of N-aryl-5-methylfuro[2,3-d]pyrimidin-4-amines, obtained from Ullmann coupling of 4-amino-5-methylfuro[2,3-d]pyrimidine and appropriate aryl iodides. Compounds 3, 4, and 9 showed potent microtubule depolymerizing activities, while compounds 6-8 had slightly lower potency. Compounds 4, 6, 7, and 9 inhibited tubulin assembly with IC50 values comparable to that of combretastatin A-4 (CA-4). Compounds 3, 4, and 6-9 circumvented Pgp and ßIII-tubulin mediated drug resistance, mechanisms that can limit the efficacy of paclitaxel, docetaxel, and the vinca alkaloids. In the NCI 60-cell line panel, compound 3 exhibited GI50 values less than 10 nM in 47 of the cell lines. In an MDA-MB-435 xenograft model, compound 3 had statistically significant antitumor effects. The biological effects of 3 identify it as a novel, potent microtubule depolymerizing agent with antitumor activity.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pirimidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Nus , Microtúbulos/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
Mol Pharmacol ; 89(2): 287-96, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26655304

RESUMO

A refined model of the colchicine site on tubulin was used to design an improved analog of the pyrrole parent compound, JG-03-14. The optimized compound, NT-7-16, was evaluated in biological assays that confirm that it has potent activities as a new colchicine site microtubule depolymerizer. NT-7-16 exhibits antiproliferative and cytotoxic activities against multiple cancer cell lines, with IC(50) values of 10-16 nM, and it is able to overcome drug resistance mediated by the expression of P-glycoprotein and the ßIII isotype of tubulin. NT-7-16 initiated the concentration-dependent loss of cellular microtubules and caused the formation of abnormal mitotic spindles, leading to mitotic accumulation. The direct interaction of NT-7-16 with purified tubulin was confirmed, and it was more potent than combretastatin A-4 in these assays. Binding studies verified that NT-7-16 binds to tubulin within the colchicine site. The antitumor effects of NT-7-16 were evaluated in an MDA-MB-435 xenograft model and it had excellent activity at concentrations that were not toxic. A second compound, NT-9-21, which contains dichloro moieties in place of the 3,5-dibromo substituents of NT-7-16, had a poorer fit within the colchicine site as predicted by modeling and the Hydropathic INTeractions score. Biological evaluations showed that NT-9-21 has 10-fold lower potency than NT-7-16, confirming the modeling predictions. These studies highlight the value of the refined colchicine-site model and identify a new pyrrole-based colchicine-site agent with potent in vitro activities and promising in vivo antitumor actions.


Assuntos
Colchicina/metabolismo , Simulação de Acoplamento Molecular/métodos , Pirróis/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Sítios de Ligação/fisiologia , Colchicina/química , Cristalografia por Raios X , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Nus , Pirróis/química , Relação Estrutura-Atividade , Tubulina (Proteína)/química
13.
Bioorg Med Chem ; 22(14): 3753-72, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24890652

RESUMO

The design, synthesis and biological evaluations of fourteen 4-substituted 2,6-dimethylfuro[2,3-d]pyrimidines are reported. Four compounds (11-13, 15) inhibit vascular endothelial growth factor receptor-2 (VEGFR-2), platelet-derived growth factor receptor ß (PDGFR-ß), and target tubulin leading to cytotoxicity. Compound 11 has nanomolar potency, comparable to sunitinib and semaxinib, against tumor cell lines overexpressing VEGFR-2 and PDGFR-ß. Further, 11 binds at the colchicine site on tubulin, depolymerizes cellular microtubules and inhibits purified tubulin assembly and overcomes both ßIII-tubulin and P-glycoprotein-mediated drug resistance, and initiates mitotic arrest leading to apoptosis. In vivo, its HCl salt, 21, reduced tumor size and vascularity in xenograft and allograft murine models and was superior to docetaxel and sunitinib, without overt toxicity. Thus 21 affords potential combination chemotherapy in a single agent.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Descoberta de Drogas , Microtúbulos/efeitos dos fármacos , Neoplasias Experimentais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Água/química , Compostos de Anilina/síntese química , Compostos de Anilina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Receptores Proteína Tirosina Quinases/metabolismo , Solubilidade , Relação Estrutura-Atividade
14.
Nat Prod Commun ; 9(3): 359-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689214

RESUMO

The antiproliferative activities of 12-oxoheteronemin and heteronemin were evaluated in six cancer cell lines and IC50 values ranging from 0.66 to 1.35 microM were obtained. In four of the cell lines, 12-oxoheteronemin and heteronemin were equipotent; however, in two estrogenic receptor-positive cell lines, heteronemin showed a stronger potency. Both compounds had no overt effects on cell cycle distribution in HeLa cells, but did rapidly initiate apoptosis as evidenced by increased sub-G1 populations of cells and caspase-dependent PARP cleavage.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Terpenos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Células MCF-7
15.
Nat Prod Rep ; 31(3): 335-55, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24481420

RESUMO

Nature has yielded numerous classes of chemically distinct microtubule stabilizers. Several of these, including paclitaxel (Taxol) and docetaxel (Taxotere), are important drugs used in the treatment of cancer. New microtubule stabilizers and novel formulations of these agents continue to provide advances in cancer therapy. In this review we cover recent progress in the chemistry and biology of these diverse microtubule stabilizers focusing on the wide range of organisms that produce these compounds, their mechanisms of inhibiting microtubule-dependent processes, mechanisms of drug resistance, and their interactions with tubulin including their distinct binding sites and modes. A new potential role for microtubule stabilizers in neurodegenerative diseases is reviewed.


Assuntos
Antineoplásicos Fitogênicos , Microtúbulos/efeitos dos fármacos , Moduladores de Tubulina , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Docetaxel , Estrutura Molecular , Paclitaxel/farmacologia , Taxoides/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/isolamento & purificação , Moduladores de Tubulina/farmacologia
16.
J Nat Prod ; 76(10): 1923-9, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24087857

RESUMO

The biosynthesis of secondary metabolites provides higher plants with mechanisms of defense against microbes, insects, and herbivores. One common cellular target of these molecules is the highly conserved microtubule cytoskeleton, and microtubule-targeting compounds with insecticidal, antifungal, nematicidal, and anticancer activities have been identified from plants. A new retro-dihydrochalcone, taccabulin A, with microtubule-destabilizing activity has been identified from the roots and rhizomes of Tacca species. This finding is notable because the microtubule-stabilizing taccalonolides are also isolated from these sources. This is the first report of an organism producing compounds with both microtubule-stabilizing and -destabilizing activities. A two-step chemical synthesis of taccabulin A was performed. Mechanistic studies showed that taccabulin A binds within the colchicine site on tubulin and has synergistic antiproliferative effects against cancer cells when combined with a taccalonolide, which binds to a different site on tubulin. Taccabulin A is effective in cells that are resistant to many other plant-derived compounds. The discovery of a natural source that contains both microtubule-stabilizing and -destabilizing small molecules is unprecedented and suggests that the synergistic action of these compounds was exploited by nature long before it was discovered in the laboratory.


Assuntos
Chalconas/isolamento & purificação , Chalconas/farmacologia , Dioscoreaceae/química , Microtúbulos/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Chalconas/química , Células HeLa , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Raízes de Plantas/química , Rizoma/química , Tubulina (Proteína)/efeitos dos fármacos
17.
J Med Chem ; 56(17): 6829-44, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23895532

RESUMO

A series of 21 substituted cyclopenta[d]pyrimidines were synthesized as an extension of our discovery of the parent compound (±)-1·HCl as an anti-microtubule agent. The structure-activity relationship indicates that the N-methyl and a 4N-methoxy groups appear important for potent activity. In addition, the 6-substituent in the parent analogue is not necessary for activity. The most potent compound 30·HCl was a one to two digit nanomolar inhibitor of most tumor cell proliferations and was up to 7-fold more potent than the parent compound (±)-1·HCl. In addition, 30·HCl inhibited cancer cell proliferation regardless of Pgp or ßIII-tubulin status, both of which are known to cause clinical resistance to several anti-tubulin agents. In vivo efficacy of 30·HCl was demonstrated against a triple negative breast cancer xenograft mouse model. Compound 30·HCl is water-soluble and easily synthesized and serves as a lead compound for further preclinical evaluation as an antitumor agent.


Assuntos
Compostos de Anilina/química , Compostos de Anilina/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Relação Estrutura-Atividade
18.
Biochem Pharmacol ; 85(8): 1104-14, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23399639

RESUMO

Microtubule stabilizers are some of the most successful drugs used in the treatment of adult solid tumors and yet the molecular events responsible for their antimitotic actions are not well defined. The mitotic events initiated by three structurally and biologically diverse microtubule stabilizers; taccalonolide AJ, laulimalide/fijianolide B and paclitaxel were studied. These microtubule stabilizers cause the formation of aberrant, but structurally distinct mitotic spindles leading to the hypothesis that they differentially affect mitotic signaling. Each microtubule stabilizer initiated different patterns of expression of key mitotic signaling proteins. Taccalonolide AJ causes centrosome separation and disjunction failure to a much greater extent than paclitaxel or laulimalide, which is consistent with the distinct defects in expression and activation of Plk1 and Eg5 caused by each stabilizer. Localization studies revealed that TPX2 and Aurora A are associated with each spindle aster formed by each stabilizer. This suggests a common mechanism of aster formation. However, taccalonolide AJ also causes pericentrin accumulation on every spindle aster. The presence of pericentrin at every spindle aster initiated by taccalonolide AJ might facilitate the maintenance and stability of the highly focused asters formed by this stabilizer. Laulimalide and paclitaxel cause completely different patterns of expression and activation of these proteins, as well as phenotypically different spindle phenotypes. Delineating how diverse microtubule stabilizers affect mitotic signaling pathways could identify key proteins involved in modulating sensitivity and resistance to the antimitotic actions of these compounds.


Assuntos
Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Aurora Quinases , Proteínas de Ciclo Celular/metabolismo , Centrossomo/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Células HeLa , Humanos , Cinesinas/metabolismo , Macrolídeos/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/enzimologia , Proteínas Nucleares/metabolismo , Paclitaxel/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/enzimologia , Esteroides/farmacologia , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA