Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714890

RESUMO

Diseases caused by parasitic flatworms impart a considerable healthcare burden worldwide. Many of these diseases-for example, the parasitic blood fluke infection schistosomiasis-are treated with the drug praziquantel (PZQ). However, PZQ is ineffective against disease caused by liver flukes from the genus Fasciola because of a single amino acid change within the target of PZQ, a transient receptor potential ion channel in the melastatin family (TRPMPZQ), in Fasciola species. Here, we identify benzamidoquinazolinone analogs that are active against Fasciola TRPMPZQ. Structure-activity studies define an optimized ligand (BZQ) that caused protracted paralysis and tegumental damage to these liver flukes. BZQ also retained activity against Schistosoma mansoni comparable to PZQ and was active against TRPMPZQ orthologs in all profiled species of parasitic fluke. This broad-spectrum activity manifests as BZQ adopts a pose within the binding pocket of TRPMPZQ that is dependent on a ubiquitously conserved residue. BZQ therefore acts as a universal activator of trematode TRPMPZQ and a first-in-class, broad-spectrum flukicide.

2.
J Biol Chem ; 300(1): 105528, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043794

RESUMO

Parasitic flatworms cause various clinical and veterinary infections that impart a huge burden worldwide. The most clinically impactful infection is schistosomiasis, a neglected tropical disease caused by parasitic blood flukes. Schistosomiasis is treated with praziquantel (PZQ), an old drug introduced over 40 years ago. New drugs are urgently needed, as while PZQ is broadly effective it suffers from several limitations including poor efficacy against juvenile worms, which may prevent it from being completely curative. An old compound that retains efficacy against juvenile worms is the benzodiazepine meclonazepam (MCLZ). However, host side effects caused by benzodiazepines preclude development of MCLZ as a drug and MCLZ lacks an identified parasite target to catalyze rational drug design for engineering out human host activity. Here, we identify a transient receptor potential ion channel of the melastatin subfamily, named TRPMMCLZ, as a parasite target of MCLZ. MCLZ potently activates Schistosoma mansoni TRPMMCLZ through engagement of a binding pocket within the voltage-sensor-like domain of the ion channel to cause worm paralysis, tissue depolarization, and surface damage. TRPMMCLZ reproduces all known features of MCLZ action on schistosomes, including a lower activity versus Schistosoma japonicum, which is explained by a polymorphism within this voltage-sensor-like domain-binding pocket. TRPMMCLZ is distinct from the TRP channel targeted by PZQ (TRPMPZQ), with both anthelmintic chemotypes targeting unique parasite TRPM paralogs. This advances TRPMMCLZ as a novel druggable target that could circumvent any target-based resistance emerging in response to current mass drug administration campaigns centered on PZQ.


Assuntos
Anti-Helmínticos , Clonazepam , Esquistossomose mansoni , Canais de Cátion TRPM , Animais , Humanos , Anti-Helmínticos/farmacologia , Benzodiazepinas/farmacologia , Benzodiazepinonas/farmacologia , Clonazepam/análogos & derivados , Clonazepam/farmacologia , Praziquantel/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/tratamento farmacológico , Canais de Cátion TRPM/agonistas
3.
ACS Med Chem Lett ; 14(11): 1537-1543, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37970586

RESUMO

The anthelmintic drug praziquantel remains a key clinical therapy for treating various diseases caused by parasitic flatworms. The parasite target of praziquantel has remained undefined despite longstanding usage in the clinic, although a candidate ion channel target, named TRPMPZQ, has recently been identified. Intriguingly, certain praziquantel derivatives show different activities against different parasites: for example, some praziquantel analogs are considerably more active against cestodes than against schistosomes. Here we interrogate whether the different activities of praziquantel analogs against different parasites are also reflected by unique structure-activity relationships at the TRPMPZQ channels found in these different organisms. To do this, several praziquantel analogs were synthesized and functionally profiled against schistosome and cestode TRPMPZQ channels. Data demonstrate that structure-activity relationships are closely mirrored between parasites and their TRPMPZQ orthologs, providing further support for TRPMPZQ as the therapeutically relevant target of praziquantel.

4.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790347

RESUMO

Diseases caused by parasitic flatworms impart a considerable healthcare burden worldwide. Many of these diseases - for example, the parasitic blood fluke infection, schistosomiasis - are treated with the drug praziquantel (PZQ). However, PZQ is ineffective against disease caused by liver flukes from the genus Fasciola. This is due to a single amino acid change within the target of PZQ, a transient receptor potential ion channel (TRPMPZQ), in Fasciola species. Here we identify benzamidoquinazolinone analogs that are active against Fasciola TRPMPZQ. Structure-activity studies define an optimized ligand (BZQ) that caused protracted paralysis and damage to the protective tegument of these liver flukes. BZQ also retained activity against Schistosoma mansoni comparable to PZQ and was active against TRPMPZQ orthologs in all profiled species of parasitic fluke. This broad spectrum activity was manifest as BZQ adopts a pose within the binding pocket of TRPMPZQ dependent on a ubiquitously conserved residue. BZQ therefore acts as a universal activator of trematode TRPMPZQ and a first-in-class, broad spectrum flukicide.

5.
Proc Natl Acad Sci U S A ; 120(1): e2217732120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574686

RESUMO

The drug praziquantel (PZQ) is the key clinical therapy for treating schistosomiasis and other infections caused by parasitic flatworms. A schistosome target for PZQ was recently identified- a transient receptor potential ion channel in the melastatin subfamily (TRPMPZQ)-however, little is known about the properties of TRPMPZQ in other parasitic flatworms. Here, TRPMPZQ orthologs were scrutinized from all currently available parasitic flatworm genomes. TRPMPZQ is present in all parasitic flatworms, and the consensus PZQ binding site was well conserved. Functional profiling of trematode, cestode, and a free-living flatworm TRPMPZQ ortholog revealed differing sensitives (~300-fold) of these TRPMPZQ channels toward PZQ, which matched the varied sensitivities of these different flatworms to PZQ. Three loci of variation were defined across the parasitic flatworm TRPMPZQ pocketome with the identity of an acidic residue in the TRP domain acting as a gatekeeper residue impacting PZQ residency within the TRPMPZQ ligand binding pocket. In trematodes and cyclophyllidean cestodes, which display high sensitivity to PZQ, this TRP domain residue is an aspartic acid which is permissive for potent activation by PZQ. However, the presence of a glutamic acid residue found in other parasitic and free-living flatworm TRPMPZQ was associated with lower sensitivity to PZQ. The definition of these different binding pocket architectures explains why PZQ shows high therapeutic effectiveness against specific fluke and tapeworm infections and will help the development of better tailored therapies toward other parasitic infections of humans, livestock, and fish.


Assuntos
Cestoides , Platelmintos , Canais de Cátion TRPM , Trematódeos , Animais , Praziquantel/farmacologia , Schistosoma , Canais de Cátion TRPM/metabolismo
6.
Sci Transl Med ; 13(625): eabj5832, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936384

RESUMO

Praziquantel (PZQ) is an essential medicine for treating parasitic flatworm infections such as schistosomiasis, which afflicts over 250 million people. However, PZQ is not universally effective, lacking activity against liver flukes of the Fasciola genus. The reason for this insensitivity is unclear, as the mechanism of PZQ action is unknown. Here, we use ligand- and target-based methods to demonstrate that PZQ activates a transient receptor potential melastatin ion channel (TRPMPZQ) in schistosomes by engaging a hydrophobic ligand binding pocket within the voltage sensor­like domain of the channel to cause calcium entry and worm paralysis. PZQ activates TRPMPZQ homologs in other PZQ-sensitive flukes, but not Fasciola hepatica. However, a single amino acid change in the F. hepatica TRPMPZQ binding pocket, to mimic schistosome TRPMPZQ, confers PZQ sensitivity. After decades of clinical use, the molecular basis of PZQ action at a druggable TRP channel is resolved.


Assuntos
Anti-Helmínticos , Platelmintos , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Humanos , Canais Iônicos/metabolismo , Praziquantel/metabolismo , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Schistosoma/metabolismo
7.
Sci Transl Med ; 13(625): eabj9114, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936381

RESUMO

Mass drug administration with praziquantel (PZQ) monotherapy is considered the mainstay for control and elimination of the parasites causing schistosomiasis in humans. This drug shows imperfect cure rates in the field, and parasites showing reduced PZQ response can be selected in the laboratory, but the extent of resistance in Schistosoma mansoni populations is unknown. We examined the genetic basis of the variation in response in a PZQ-selected S. mansoni population (SmLE-PZQ-R) in which 35% of the parasitic worms survive high-dose PZQ (73 micrograms per milliliter) treatment. We used genome-wide association to map loci underlying PZQ response and identified a transient receptor potential (Sm.TRPMPZQ) channel (Smp_246790) within the major chromosome 3 peak that is activated by nanomolar concentrations of PZQ. The PZQ response showed recessive inheritance and marker-assisted selection of parasites at a single Sm.TRPMPZQ SNP that produced populations of PZQ-enriched resistant (PZQ-ER) and PZQ-enriched sensitive (PZQ-ES) parasites, exhibiting >377-fold difference in PZQ response. The PZQ-ER parasites survived treatment in rodents at higher frequencies compared with PZQ-ES, and resistant parasites exhibited 2.25-fold lower expression of Sm.TRPMPZQ relative to sensitive parasites. Specific chemical blockers of Sm.TRPMPZQ enhanced PZQ resistance, whereas Sm.TRPMPZQ activators increased sensitivity. We surveyed Sm.TRPMPZQ sequence variations in 259 parasites from different global sites and identified one nonsense mutation that resulted in a truncated protein with no PZQ binding site. Our results demonstrate that Sm.TRPMPZQ underlies variation in PZQ responses in S. mansoni and provides an approach for monitoring emerging PZQ-resistant alleles in schistosome elimination programs.


Assuntos
Anti-Helmínticos , Parasitos , Esquistossomose mansoni , Canais de Potencial de Receptor Transitório , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Estudo de Associação Genômica Ampla , Parasitos/metabolismo , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/epidemiologia , Esquistossomose mansoni/parasitologia , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/uso terapêutico
8.
PLoS Negl Trop Dis ; 15(11): e0009898, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34731172

RESUMO

Given the worldwide burden of neglected tropical diseases, there is ongoing need to develop novel anthelmintic agents to strengthen the pipeline of drugs to combat these burdensome infections. Many diseases caused by parasitic flatworms are treated using the anthelmintic drug praziquantel (PZQ), employed for decades as the key clinical agent to treat schistosomiasis. PZQ activates a flatworm transient receptor potential (TRP) channel within the melastatin family (TRPMPZQ) to mediate sustained Ca2+ influx and worm paralysis. As a druggable target present in many parasitic flatworms, TRPMPZQ is a promising target for a target-based screening campaign with the goal of discovering novel regulators of this channel complex. Here, we have optimized methods to miniaturize a Ca2+-based reporter assay for Schistosoma mansoni TRPMPZQ (Sm.TRPMPZQ) activity enabling a high throughput screening (HTS) approach. This methodology will enable further HTS efforts against Sm.TRPMPZQ as well as other flatworm ion channels. A pilot screen of ~16,000 compounds yielded a novel activator of Sm.TRPMPZQ, and numerous potential blockers. The new activator of Sm.TRPMPZQ represented a distinct chemotype to PZQ, but is a known chemical entity previously identified by phenotypic screening. The fact that a compound prioritized from a phenotypic screening campaign is revealed to act, like PZQ, as an Sm.TRPMPZQ agonist underscores the validity of TRPMPZQ as a druggable target for antischistosomal ligands.


Assuntos
Anti-Helmínticos/farmacologia , Proteínas de Helminto/antagonistas & inibidores , Praziquantel/farmacologia , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Animais , Anti-Helmínticos/química , Cálcio/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Humanos , Masculino , Camundongos , Praziquantel/química , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/genética , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
9.
Cell Calcium ; 97: 102430, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34120081

RESUMO

The endoplasmic reticulum (ER) Ca2+ store contains many rapidly differentiable subdomains with specialized signaling properties. Recent work highlights how an integral ER membrane protein - the sigma 1 receptor (S1R) - nucleates local formation of cholesterol-rich ER subdomains. Biophysical approaches cast new light on S1Rs and how their dynamics is impacted by drugs and disease states.

10.
PLoS Negl Trop Dis ; 15(3): e0009200, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33657133

RESUMO

Control of the neglected tropical disease schistosomiasis relies almost entirely on praziquantel (PZQ) monotherapy. How PZQ clears parasite infections remains poorly understood. Many studies have examined the effects of PZQ on worms cultured in vitro, observing outcomes such as muscle contraction. However, conditions worms are exposed to in vivo may vary considerably from in vitro experiments given the short half-life of PZQ and the importance of host immune system engagement for drug efficacy in animal models. Here, we investigated the effects of in vivo PZQ exposure on Schistosoma mansoni. Measurement of pro-apoptotic caspase activation revealed that worm death occurs only after parasites shift from the mesenteric vasculature to the liver, peaking 24 hours after drug treatment. This indicates that PZQ is not directly schistocidal, since PZQ's half-life is ~2 hours in humans and ~30 minutes in mice, and focuses attention on parasite interactions with the host immune system following the shift of worms to the liver. RNA-Seq of worms harvested from mouse livers following sub-lethal PZQ treatment revealed drug-evoked changes in the expression of putative immunomodulatory and anticoagulant gene products. Several of these gene products localized to the schistosome esophagus and may be secreted into the host circulation. These include several Kunitz-type protease inhibitors, which are also found in the secretomes of other blood feeding animals. These transcriptional changes may reflect mechanisms of parasite immune-evasion in response to chemotherapy, given the role of complement-mediated attack and the host innate/humoral immune response in parasite elimination. One of these isoforms, SmKI-1, has been shown to exhibit immunomodulatory and anti-coagulant properties. These data provide insight into the effect of in vivo PZQ exposure on S. mansoni, and the transcriptional response of parasites to the stress of chemotherapy.


Assuntos
Anti-Helmínticos/farmacologia , Praziquantel/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Animais , Anti-Helmínticos/administração & dosagem , Feminino , Fígado/parasitologia , Camundongos , Doenças Negligenciadas , Praziquantel/administração & dosagem , Schistosoma mansoni/genética , Schistosoma mansoni/imunologia , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA