Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 12(550)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611681

RESUMO

Circulating RNA (C-RNA) is continually released into the bloodstream from tissues throughout the body, offering an opportunity to noninvasively monitor all aspects of pregnancy health from conception to birth. We asked whether C-RNA analysis could robustly detect aberrations in patients diagnosed with preeclampsia (PE), a prevalent and potentially fatal pregnancy complication. As an initial examination, we sequenced the circulating transcriptome from 40 pregnancies at the time of severe, early-onset PE diagnosis and 73 gestational age-matched controls. Differential expression analysis identified 30 transcripts with gene ontology annotations and tissue expression patterns consistent with the placental dysfunction, impaired fetal development, and maternal immune and cardiovascular system dysregulation characteristic of PE. Furthermore, machine learning identified combinations of 49 C-RNA transcripts that classified an independent cohort of patients (early-onset PE, n = 12; control, n = 12) with 85 to 89% accuracy. C-RNA may thus hold promise for improving the diagnosis and identification of at-risk pregnancies.


Assuntos
Doenças Placentárias , Pré-Eclâmpsia , Estudos de Casos e Controles , Feminino , Idade Gestacional , Humanos , Placenta , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/genética , Gravidez , Terceiro Trimestre da Gravidez
2.
Proc Natl Acad Sci U S A ; 115(42): 10804-10809, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30262650

RESUMO

Somatic copy number variations (CNVs) exist in the brain, but their genesis, prevalence, forms, and biological impact remain unclear, even within experimentally tractable animal models. We combined a transposase-based amplification (TbA) methodology for single-cell whole-genome sequencing with a bioinformatic approach for filtering unreliable CNVs (FUnC), developed from machine learning trained on lymphocyte V(D)J recombination. TbA-FUnC offered superior genomic coverage and removed >90% of false-positive CNV calls, allowing extensive examination of submegabase CNVs from over 500 cells throughout the neurogenic period of cerebral cortical development in Mus musculus Thousands of previously undocumented CNVs were identified. Half were less than 1 Mb in size, with deletions 4× more common than amplification events, and were randomly distributed throughout the genome. However, CNV prevalence during embryonic cortical development was nonrandom, peaking at midneurogenesis with levels triple those found at younger ages before falling to intermediate quantities. These data identify pervasive small and large CNVs as early contributors to neural genomic mosaicism, producing genomically diverse cellular building blocks that form the highly organized, mature brain.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Variações do Número de Cópias de DNA , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/genética , Análise de Célula Única/métodos , Sequenciamento Completo do Genoma/métodos , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Genoma , Genômica , Camundongos , Camundongos Endogâmicos C57BL
3.
Dev Neurobiol ; 78(11): 1026-1048, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30027562

RESUMO

Since the discovery of DNA, the normal developing and functioning brain has been assumed to be composed of cells with identical genomes, which remains the dominant view even today. However, this pervasive assumption is incorrect, as proven by increasing numbers of reports within the last 20 years that have identified multiple forms of somatically produced genomic mosaicism (GM), wherein brain cells-especially neurons-from a single individual show diverse alterations in DNA, distinct from the germline. Critically, these changes alter the actual DNA nucleotide sequences-in contrast to epigenetic mechanisms-and almost certainly contribute to the remarkably diverse phenotypes of single brain cells, including single-cell transcriptomic profiles. Here, we review the history of GM within the normal brain, including its major forms, initiating mechanisms, and possible functions. GM forms include aneuploidies and aneusomies, smaller copy number variations (CNVs), long interspersed nuclear element type 1 (LINE1) repeat elements, and single nucleotide variations (SNVs), as well as DNA content variation (DCV) that reflects all forms of GM with greatest coverage of large, brain cell populations. In addition, technical considerations are examined, along with relationships among GM forms and multiple brain diseases. GM affecting genes and loci within the brain contrast with current neural discovery approaches that rely on sequencing nonbrain DNA (e.g., genome-wide association studies (GWAS)). Increasing knowledge of neural GM has implications for mechanisms of development, diversity, and function, as well as understanding diseases, particularly considering the overwhelming prevalence of sporadic brain diseases that are unlinked to germline mutations. © 2018 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol, 2018.


Assuntos
Encéfalo/crescimento & desenvolvimento , Variações do Número de Cópias de DNA/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Mosaicismo , Animais , Estudo de Associação Genômica Ampla , Genômica , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-25271107

RESUMO

Sarcoplasmic calcium binding protein (SCP) is a high-affinity calcium buffering protein expressed in muscle of crayfish and other invertebrates. In previous work, we identified three splice variants of Procambarus clarkii SCP (pcSCP1a, pcSCP1b, and pcSCP1c) that differ in a 37 amino acid region that lies mainly between the 2nd and 3ed EF-hand calcium binding domain. To evaluate the function of the proteins encoded by the pcSCP1 transcripts, we produced recombinant pcSCP1 and used tryptophan fluorescence to characterize calcium binding. Tryptophan fluorescence of pcSCP1a decreased in response to increased calcium, while tryptophan fluorescence of the pcSCP1b and pcSCP1c variants increased. We estimated calcium binding constants and Hill coefficients with two different equations: the standard Hill equation and a modified Hill equation that accounts for contributions from two different tryptophans. The approaches gave similar results. Steady-state calcium binding constants (Kd) ranged from 2.7±0.7×10(-8)M to 5.6±0.1×10(-7)M, consistent with previous work. Variants displayed significantly different apparent calcium affinities, which were decreased in the presence of magnesium. Calcium Kd was lowest for pcSCP1a and highest for pcSCP1c. Site-directed mutagenesis of pcSCP1c residues to the amino acids of pcSCP1b decreased the calcium Kd, identifying residues outside the EF-hand domains that contribute to calcium binding in crayfish SCP.


Assuntos
Astacoidea/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de Proteína , Retículo Sarcoplasmático/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-21530674

RESUMO

Sarcoplasmic calcium binding protein (SCP) is an invertebrate EF-hand calcium buffering protein that has been proposed to fulfill a similar function in muscle relaxation as vertebrate parvalbumin. We have identified three SCP variants in the freshwater crayfish Procambarus clarkii. The variants (pcSCP1a, pcSCP1b, and pcSCP1c) differ across a 37 amino acid region that lies mainly between the second and third EF-hand calcium binding domains. We evaluated tissue distribution and response of the variants to cold exposure, a stress known to affect expression of parvalbumin. Expression patterns of the variants were not different and therefore do not provide a functional rationale for the polymorphism of pcSCP1. Compared to hepatopancreas, expression of pcSCP1 variants was 100,000-fold greater in axial abdominal muscle and 10-fold greater in cardiac muscle. Expression was 10-100 greater in fast-twitch deep flexor and extensor muscles compared to slow-twitch superficial flexor and extensors. In axial muscle, no significant changes of pcSCP1, calmodulin (CaM), or sarcoplasmic/endoplasmic reticulum Ca-ATPase (SERCA) expression were measured after one week of 4°C exposure. In contrast, large decreases of pcSCP1 were measured in cardiac muscle, with no changes in CaM or SERCA. Knockdown of pcSCP1 by dsRNA led to reduced muscle activity and decreased expression of SERCA. In summary, the pattern of pcSCP1 tissue expression is similar to parvalbumin, supporting a role in muscle contraction. However, the response of pcSCP1 to cold exposure differs from parvalbumin, suggesting possible functional divergence between the two proteins.


Assuntos
Astacoidea/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Isoformas de Proteínas/metabolismo , Retículo Sarcoplasmático/metabolismo , Sequência de Aminoácidos , Animais , Astacoidea/genética , Proteínas de Ligação ao Cálcio/genética , Temperatura Baixa , Feminino , Masculino , Dados de Sequência Molecular , Polimorfismo Genético , Isoformas de Proteínas/genética , Interferência de RNA , Alinhamento de Sequência , Distribuição Tecidual
6.
Biochem Biophys Res Commun ; 406(1): 47-52, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21291865

RESUMO

Adenosine-regulated glutamate signaling in astrocytes is implicated in many neurological and neuropsychiatric disorders. In this study, we examined whether adenosine A1 receptor regulates EAAT2 expression in astrocytes using pharmacological agents and siRNAs. We found that adenosine A1 receptor-specific antagonist DPCPX or PSB36 decreased EAAT2 expression in a dose-dependent manner. Consistently, knockdown of A1 receptor in astrocytes decreased EAAT2 mRNA expression while overexpression of A1 receptor upregulated EAAT2 expression and function. Since A1 receptor activation is mainly coupled to inhibitory G-proteins and inhibits the activity of adenylate cyclase, we investigated the effect of forskolin, which activates adenylate cyclase activity, on EAAT2 mRNA levels. Interestingly, we found that forskolin reduced EAAT2 expression in dose- and time-dependent manners. In contrast, adenylate cyclase inhibitor SQ22536 increased EAAT2 expression in dose- and time-dependent manners. In addition, forskolin blocked ethanol-induced EAAT2 upregulation. Taken together, these results suggest that A1 receptor-mediated signaling regulates EAAT2 expression in astrocytes.


Assuntos
Astrócitos/efeitos dos fármacos , Etanol/toxicidade , Transportador 2 de Aminoácido Excitatório/biossíntese , Receptor A1 de Adenosina/metabolismo , Adenilil Ciclases/metabolismo , Alcoolismo/genética , Alcoolismo/metabolismo , Animais , Astrócitos/metabolismo , Colforsina/farmacologia , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador 2 de Aminoácido Excitatório/genética , Técnicas de Silenciamento de Genes , Camundongos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptor A1 de Adenosina/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA