Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuropsychologia ; 199: 108905, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38740179

RESUMO

Linguistic research showed that the depth of syntactic embedding is reflected in brain theta power. Here, we test whether this also extends to non-linguistic stimuli, specifically music. We used a hierarchical model of musical syntax to continuously quantify two types of expert-annotated harmonic dependencies throughout a piece of Western classical music: prolongation and preparation. Prolongations can roughly be understood as a musical analogue to linguistic coordination between constituents that share the same function (e.g., 'pizza' and 'pasta' in 'I ate pizza and pasta'). Preparation refers to the dependency between two harmonies whereby the first implies a resolution towards the second (e.g., dominant towards tonic; similar to how the adjective implies the presence of a noun in 'I like spicy … '). Source reconstructed MEG data of sixty-five participants listening to the musical piece was then analysed. We used Bayesian Mixed Effects models to predict theta envelope in the brain, using the number of open prolongation and preparation dependencies as predictors whilst controlling for audio envelope. We observed that prolongation and preparation both carry independent and distinguishable predictive value for theta band fluctuation in key linguistic areas such as the Angular, Superior Temporal, and Heschl's Gyri, or their right-lateralised homologues, with preparation showing additional predictive value for areas associated with the reward system and prediction. Musical expertise further mediated these effects in language-related brain areas. Results show that predictions of precisely formalised music-theoretical models are reflected in the brain activity of listeners which furthers our understanding of the perception and cognition of musical structure.


Assuntos
Percepção Auditiva , Magnetoencefalografia , Música , Ritmo Teta , Humanos , Ritmo Teta/fisiologia , Masculino , Feminino , Percepção Auditiva/fisiologia , Adulto , Adulto Jovem , Estimulação Acústica , Teorema de Bayes , Encéfalo/fisiologia
2.
Cogn Sci ; 47(12): e13389, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38038624

RESUMO

Music can be interpreted by attributing syntactic relationships to sequential musical events, and, computationally, such musical interpretation represents an analogous combinatorial task to syntactic processing in language. While this perspective has been primarily addressed in the domain of harmony, we focus here on rhythm in the Western tonal idiom, and we propose for the first time a framework for modeling the moment-by-moment execution of processing operations involved in the interpretation of music. Our approach is based on (1) a music-theoretically motivated grammar formalizing the competence of rhythmic interpretation in terms of three basic types of dependency (preparation, syncopation, and split; Rohrmeier, 2020), and (2) psychologically plausible predictions about the complexity of structural integration and memory storage operations, necessary for parsing hierarchical dependencies, derived from the dependency locality theory (Gibson, 2000). With a behavioral experiment, we exemplify an empirical implementation of the proposed theoretical framework. One hundred listeners were asked to reproduce the location of a visual flash presented while listening to three rhythmic excerpts, each exemplifying a different interpretation under the formal grammar. The hypothesized execution of syntactic-processing operations was found to be a significant predictor of the observed displacement between the reported and the objective location of the flashes. Overall, this study presents a theoretical approach and a first empirical proof-of-concept for modeling the cognitive process resulting in such interpretation as a form of syntactic parsing with algorithmic similarities to its linguistic counterpart. Results from the present small-scale experiment should not be read as a final test of the theory, but they are consistent with the theoretical predictions after controlling for several possible confounding factors and may form the basis for further large-scale and ecological testing.


Assuntos
Música , Humanos , Música/psicologia , Idioma , Cognição , Tempo , Linguística , Percepção Auditiva
3.
Cogn Sci ; 46(7): e13165, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35738498

RESUMO

While theoretical and empirical insights suggest that the capacity to represent and process complex syntax is crucial in language as well as other domains, it is still unclear whether specific parsing mechanisms are also shared across domains. Focusing on the musical domain, we developed a novel behavioral paradigm to investigate whether a phenomenon of syntactic revision occurs in the processing of tonal melodies under analogous conditions as in language. We present the first proof-of-existence for syntactic revision in a set of tonally ambiguous melodies, supporting the relevance of syntactic representations and parsing with language-like characteristics in a nonlinguistic domain. Furthermore, we find no evidence for a modulatory effect of musical training, suggesting that a general cognitive capacity, rather than explicit knowledge and strategies, may underlie the observed phenomenon in music.


Assuntos
Música , Percepção Auditiva , Humanos , Idioma , Linguística
4.
Conscious Cogn ; 27: 155-67, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24905545

RESUMO

Humans rapidly learn complex structures in various domains. Findings of above-chance performance of some untrained control groups in artificial grammar learning studies raise questions about the extent to which learning can occur in an untrained, unsupervised testing situation with both correct and incorrect structures. The plausibility of unsupervised online-learning effects was modelled with n-gram, chunking and simple recurrent network models. A novel evaluation framework was applied, which alternates forced binary grammaticality judgments and subsequent learning of the same stimulus. Our results indicate a strong online learning effect for n-gram and chunking models and a weaker effect for simple recurrent network models. Such findings suggest that online learning is a plausible effect of statistical chunk learning that is possible when ungrammatical sequences contain a large proportion of grammatical chunks. Such common effects of continuous statistical learning may underlie statistical and implicit learning paradigms and raise implications for study design and testing methodologies.


Assuntos
Aprendizagem/fisiologia , Linguística , Redes Neurais de Computação , Humanos , Internet , Curva de Aprendizado , Modelos Psicológicos , Aprendizagem por Probabilidade
5.
Int J Psychophysiol ; 83(2): 164-75, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22245599

RESUMO

Expectation and prediction constitute central mechanisms in the perception and cognition of music, which have been explored in theoretical and empirical accounts. We review the scope and limits of theoretical accounts of musical prediction with respect to feature-based and temporal prediction. While the concept of prediction is unproblematic for basic single-stream features such as melody, it is not straight-forward for polyphonic structures or higher-order features such as formal predictions. Behavioural results based on explicit and implicit (priming) paradigms provide evidence of priming in various domains that may reflect predictive behaviour. Computational learning models, including symbolic (fragment-based), probabilistic/graphical, or connectionist approaches, provide well-specified predictive models of specific features and feature combinations. While models match some experimental results, full-fledged music prediction cannot yet be modelled. Neuroscientific results regarding the early right-anterior negativity (ERAN) and mismatch negativity (MMN) reflect expectancy violations on different levels of processing complexity, and provide some neural evidence for different predictive mechanisms. At present, the combinations of neural and computational modelling methodologies are at early stages and require further research.


Assuntos
Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Cognição/fisiologia , Previsões/métodos , Processos Mentais/fisiologia , Música , Animais , Humanos , Aprendizagem/fisiologia , Memória/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA