Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986502

RESUMO

The wetsalts tiger beetle, Cicindelidia haemorrhagica (LeConte) (Coleoptera: Cicindelidae), is found in several active thermal hot spring areas in Yellowstone National Park (YNP) where substrate surface temperatures can exceed 50 °C. However, relationships between surface temperatures and the time adults spend on them remain poorly understood. Therefore, we characterized thermal profiles of Dragon Spring and Rabbit Creek, 2 thermally active research sites containing C. haemorrhagica in YNP, to quantify the time adults spend at different surface temperatures. We took 58 thermal video recordings of adults over 6 total days of observation ranging from 10 to 15 min for each adult. Thermal video analysis results indicated a positive relationship between the total time adult beetles spent on surface temperatures from Dragon Spring and Rabbit Creek as temperatures increased from 20 °C. Once surface temperatures exceeded 40 °C, the total time spent at those surface temperatures declined. Adults were recorded on substrates exceeding 50 °C at one of the 2 research locations. Rabbit Creek had substantially more instances of adults present with surface temperatures exceeding 40 °C, including one individual on a surface temperature of 61.5 °C. There were 3 instances of beetles spending more than 4 min at a particular surface temperature, all within the preferred range of 30-40 °C. Our thermal profile results and previous behavioral observations suggest that adults may be resistant to the heat produced from the thermal waters that influence the substrate temperatures but may not be subject to high surface temperatures as previously reported.

2.
PeerJ ; 12: e16827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406272

RESUMO

Yellowstone National Park thermal features regularly discharge various heavy metals and metalloids. These metals are taken up by microorganisms that often form mats in thermal springs. These microbial mats also serve as food sources for invertebrate assemblages. To examine how heavy metals move through insect food webs associated with hot springs, two sites were selected for this study. Dragon-Beowulf Hot Springs, acid-sulfate chloride springs, have a pH of 2.9, water temperatures above 70 °C, and populations of thermophilic bacterial, archaeal, and algal mats. Rabbit Creek Hot Springs, alkaline springs, have a pH of up to 9, some water temperatures in excess of 60 °C, and are populated with thermophilic and phototrophic bacterial mats. Mats in both hydrothermal systems form the trophic base and support active metal transfer to terrestrial food chains. In both types of springs, invertebrates bioaccumulated heavy metals including chromium, manganese, cobalt, nickel, copper, cadmium, mercury, tin and lead, and the metalloids arsenic, selenium, and antimony resulting from consuming the algal and bacterial mat biomass. At least two orders of magnitude increase in concentrations were observed in the ephydrid shore fly Paracoenia turbida, as compared to the mats for all metals except antimony, mercury, and lead. The highest bioaccumulation factor (BAF) of 729 was observed for chromium. At the other end of the food web, the invertebrate apex predator, Cicindelidia haemorrhagica, had at least a 10-fold BAF for all metals at some location-year combinations, except with antimony. Of other taxa, high BAFs were observed with zinc for Nebria sp. (2180) and for Salda littoralis (1080). This accumulation, occurring between primary producer and primary consumer trophic levels at both springs, is biomagnified through the trophic web. These observations suggest trace metals enter the geothermal food web through the microbial mat community and are then transferred through the food chain. Also, while bioaccumulation of arsenic is uncommon, we observed five instances of increases near or exceeding 10-fold: Odontomyia sp. larvae (13.6), P. turbida (34.8), C. haemorrhagica (9.7), Rhagovelia distincta (16.3), and Ambrysus mormon (42.8).


Assuntos
Arsênio , Dípteros , Fontes Termais , Mercúrio , Metais Pesados , Animais , Coelhos , Cadeia Alimentar , Fontes Termais/microbiologia , Antimônio , Parques Recreativos , Bactérias , Insetos , Invertebrados , Cromo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA