Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 26(4): 549-562, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36750322

RESUMO

In recent years, attempts have been made in linking pressure-volume parameters and the leaf economics spectrum to expand our knowledge of the interrelationships among leaf traits. We provide theoretical and empirical evidence for the coordination of the turgor loss point and associated traits with net CO2 assimilation (An ) and leaf mass per area (LMA). We measured gas exchange, pressure-volume curves and leaf structure in 45 ferns and angiosperms, and explored the anatomical and chemical basis of the key traits. We propose that the coordination observed between mass-based An , capacitance and the turgor loss point (πtlp ) emerges from their shared link with leaf density (one of the components of LMA) and, specially, leaf saturated water content (LSWC), which in turn relates to cell size and nitrogen and carbon content. Thus, considering the components of LMA and LSWC in ecophysiological studies can provide a broader perspective on leaf structure and function.


Assuntos
Magnoliopsida , Folhas de Planta , Folhas de Planta/fisiologia , Fotossíntese , Nitrogênio , Carbono
2.
Plant J ; 112(6): 1396-1412, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36310415

RESUMO

Water shortage strongly affects plants' physiological performance. Since tomato (Solanum lycopersicum) non-long shelf-life (nLSL) and long shelf-life (LSL) genotypes differently face water deprivation, we subjected a nLSL and a LSL genotype to four treatments: control (well watering), short-term water deficit stress at 40% field capacity (FC) (ST 40% FC), short-term water deficit stress at 30% FC (ST 30% FC), and short-term water deficit stress at 30% FC followed by recovery (ST 30% FC-Rec). Treatments promoted genotype-dependent elastic adjustments accompanied by distinct photosynthetic responses. While the nLSL genotype largely modified mesophyll conductance (gm ) across treatments, it was kept within a narrow range in the LSL genotype. However, similar gm values were achieved under ST 30% FC conditions. Particularly, modifications in the relative abundance of cell wall components and in sub-cellular anatomic parameters such as the chloroplast surface area exposed to intercellular air space per leaf area (Sc /S) and the cell wall thickness (Tcw ) regulated gm in the LSL genotype. Instead, only changes in foliar structure at the supra-cellular level influenced gm in the nLSL genotype. Even though further experiments testing a larger range of genotypes and treatments would be valuable to support our conclusions, we show that even genotypes of the same species can present different elastic, anatomical, and cell wall composition-mediated mechanisms to regulate gm when subjected to distinct water regimes.


Assuntos
Células do Mesofilo , Solanum lycopersicum , Células do Mesofilo/metabolismo , Solanum lycopersicum/genética , Água/metabolismo , Folhas de Planta/metabolismo , Fotossíntese/genética , Desidratação/metabolismo , Genótipo , Parede Celular/metabolismo , Dióxido de Carbono/metabolismo
3.
Plant Sci ; 311: 111015, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34482918

RESUMO

In the current climate change scenario, understanding crops' physiological performance under water shortage is crucial to overcome drought periods. Although the implication of leaf water relations maintaining leaf turgor and stomatal functioning under water deprivation has been suggested, the relationships between photosynthesis and osmotic and elastic adjustments remain misunderstood. Similarly, only few studies in dicotyledonous analysed how changes in cell wall composition affected photosynthesis and leaf water relations under drought. To induce modifications in photosynthesis, leaf water relations and cell wall composition, Hordeum vulgare and Triticum aestivum were subjected to different water regimes: control (CL, full irrigation), moderate and severe water deficit stress (Mod WS and Sev WS, respectively). Water shortage decreased photosynthesis mainly due to stomatal conductance (gs) declines, being accompanied by reduced osmotic potential at full turgor (πo) and increased bulk modulus of elasticity (ε). Whereas both species enhanced pectins when intensifying water deprivation, species-dependent adjustments occurred for cellulose and hemicelluloses. From these results, we showed that πo and ε influenced photosynthesis, particularly, gs. Furthermore, the (Cellulose+Hemicelluloses)/Pectins ratio determined ε and mesophyll conductance (gm) in grasses, presenting the lowest pectins content within angiosperms. Thus, we highlight the relevance of cell wall composition regulating grasses physiology during drought acclimation.


Assuntos
Parede Celular/química , Desidratação/fisiopatologia , Secas , Hordeum/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Triticum/fisiologia , Água/metabolismo , Mudança Climática , Produtos Agrícolas/fisiologia
4.
J Exp Bot ; 72(22): 7863-7875, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34379761

RESUMO

In previous work, we identified that exposure to limited water availability induced changes in cell wall composition of mature Helianthus annuus L. leaves that affected mesophyll conductance to CO2 diffusion (gm). However, it is unclear on which timescale these changes in cell wall composition occurred. Here, we subjected H. annuus to control (i.e. water availability), different levels of short-term water deficit stress (ST), long-term water deficit stress (LT), and long-term water deficit stress followed by gradual recoveries addressed at different timescales (LT-Rec) to evaluate the dynamics of modifications in the main composition of cell wall (cellulose, hemicelluloses, pectins and lignins) affecting photosynthesis. During gradual ST treatments, pectins enhancement was associated with gm decline. However, during LT-Rec, pectins content decreased significantly after only 5 h, while hemicelluloses and lignins amounts changed after 24 h, all being uncoupled from gm. Surprisingly, lignins increased by around 200% compared with control and were related to stomatal conductance to gas diffusion (gs) during LT-Rec. Although we suspect that the accuracy of the protocols to determine cell wall composition should be re-evaluated, we demonstrate for the first time that a highly dynamic cell wall composition turnover differently affects photosynthesis in plants subjected to distinct water regimes.


Assuntos
Helianthus , Dióxido de Carbono/metabolismo , Parede Celular/metabolismo , Células do Mesofilo , Fotossíntese , Folhas de Planta , Água/metabolismo
5.
Physiol Plant ; 173(4): 1914-1925, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34432898

RESUMO

Cell wall thickness (Tcw ) has been proposed as an important anatomical trait that could determine photosynthesis through land plants' phylogeny, bryophytes being the plant group presenting the thickest walls and the lowest photosynthetic rates. Also, it has recently been suggested that cell wall composition may have the potential to influence both thickness and mesophyll conductance (gm ), representing a novel trait that could ultimately affect photosynthesis. However, only a few studies in spermatophytes have demonstrated this issue. In order to explore the role of cell wall composition in determining both Tcw and gm in mosses, we tested six species grown under field conditions in Antarctica. We performed gas exchange and chlorophyll fluorescence measurements, an anatomical characterization, and a quantitative analysis of cell wall main composition (i.e., cellulose, hemicelluloses and pectins) in these six species. We found the photosynthetic rates to vary between the species, and they also presented differences in anatomical characteristics and in cell wall composition. Whilst gm correlated negatively with Tcw and pectins content, a positive relationship between Tcw and pectins emerged, suggesting that pectins could contribute to determine cell wall porosity. Although our results do not allow us to provide conclusive statements, we suggest for the first time that cell wall composition-with pectins playing a key role-could strongly influence Tcw and gm in Antarctic mosses, ultimately defining photosynthesis.


Assuntos
Briófitas , Células do Mesofilo , Regiões Antárticas , Dióxido de Carbono/metabolismo , Parede Celular/metabolismo , Fotossíntese , Folhas de Planta
6.
Plant Sci ; 307: 110890, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33902851

RESUMO

Mechanisms that allow plants to survive and reproduce after herbivory are considered to play a key role in plant evolution. In this study, we evaluated how tolerance varies in species with different historic exposure to herbivores considering ontogeny. We exposed the range-restricted species Medicago citrina and its closely related and widespread species M. arborea to one and two herbivory simulations (80 % aerial biomass loss). Physiological and growth parameters related to tolerance capacity were assessed to evaluate constitutive values (without herbivory) and induced tolerance after damage. Constitutive traits were not always related to greater tolerance, and each species compensated for herbivory through different traits. Herbivory damage only led to mortality in M. citrina; adults exhibited root biomass loss and increased oxidative stress after damage, but also compensated aerial biomass. Despite seedlings showed a lower death percentage than adults after herbivory in M. citrina, they showed less capacity to recover control values than adults. Moderate tolerance to M. arborea herbivory and low tolerance to M. citrina is found. Thus, although the constitutive characteristics are maintained in the lineage, the tolerance of plants decreases in M. citrina. That represents how plants respond to the lack of pressure from herbivores in their habitat.


Assuntos
Variação Genética , Herbivoria/genética , Herbivoria/imunologia , Medicago/crescimento & desenvolvimento , Medicago/genética , Medicago/imunologia , Imunidade Vegetal/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/imunologia , Genótipo , Espanha
7.
J Exp Bot ; 72(11): 3971-3986, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33780533

RESUMO

The key role of cell walls in setting mesophyll conductance to CO2 (gm) and, consequently, photosynthesis is reviewed. First, the theoretical properties of cell walls that can affect gm are presented. Then, we focus on cell wall thickness (Tcw) reviewing empirical evidence showing that Tcw varies strongly among species and phylogenetic groups in a way that correlates with gm and photosynthesis; that is, the thicker the mesophyll cell walls, the lower the gm and photosynthesis. Potential interplays of gm, Tcw, dehydration tolerance, and hydraulic properties of leaves are also discussed. Dynamic variations of Tcw in response to the environment and their implications in the regulation of photosynthesis are discussed, and recent evidence suggesting an influence of cell wall composition on gm is presented. We then propose a hypothetical mechanism for the influence of cell walls on photosynthesis, combining the effects of thickness and composition, particularly pectins. Finally, we discuss the prospects for using biotechnology for enhancing photosynthesis by altering cell wall-related genes.


Assuntos
Dióxido de Carbono , Fotossíntese , Dióxido de Carbono/metabolismo , Parede Celular/metabolismo , Células do Mesofilo , Filogenia , Folhas de Planta
8.
Physiol Plant ; 172(3): 1439-1451, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32770751

RESUMO

The cell wall is a complex and dynamic structure that determines plants' performance by constant remodeling of its compounds. Although cellulose is its major load-bearing component, pectins are crucial to determine wall characteristics. Changes in pectin physicochemical properties, due to pectin remodeling enzymes (PRE), induce the rearrangement of cell wall compounds, thus, modifying wall architecture. In this work, we tested for the first time how cell wall dynamics affect photosynthetic properties in Arabidopsis thaliana pectin methylesterase atpme17.2 and pectin acetylesterase atpae11.1 mutants in comparison to wild-type Col-0. Our results showed maintained PRE activities comparing mutants with wild-type and no significant differences in cellulose, but cell wall non-cellulosic neutral sugars contents changed. Particularly, the amount of galacturonic acid (GalA) - which represents to some extent the pectin cell wall proportion - was reduced in the two mutants. Additionally, physiological characterization revealed that mutants presented a decreased net CO2 assimilation (AN ) because of reductions in both stomatal (gs ) and mesophyll conductances (gm ). Thus, our results suggest that atpme17.2 and atpae11.1 cell wall modifications due to genetic alterations could play a significant role in determining photosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Pectinas/metabolismo , Fotossíntese
9.
J Exp Bot ; 71(22): 7198-7209, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32905592

RESUMO

Water deprivation affects photosynthesis, leaf anatomy, and cell wall composition. Although the former effects have been widely studied, little is known regarding those changes in cell wall major (cellulose, hemicelluloses, pectin, and lignin) and minor (cell wall-bound phenolics) compounds in plants acclimated to short- and long-term water deprivation and during recovery. In particular, how these cell wall changes impact anatomy and/or photosynthesis, specifically mesophyll conductance to CO2 diffusion (gm), has been scarcely studied. To induce changes in photosynthesis, cell wall composition and anatomy, Helianthus annuus plants were studied under five conditions: (i) control (i.e. without stress) (CL); (ii) long-term water deficit stress (LT); (iii) long-term water deficit stress with recovery (LT-Rec); (iv) short-term water deficit stress (ST); and (v) short-term water deficit stress with recovery (ST-Rec), resulting in a wide photosynthetic range (from 3.80 ± 1.05 µmol CO2 m-2 s-1 to 24.53 ± 0.42 µmol CO2 m-2 s-1). Short- and long-term water deprivation and recovery induced distinctive responses of the examined traits, evidencing a cell wall dynamic turnover during plants acclimation to each condition. In particular, we demonstrated for the first time how gm correlated negatively with lignin and cell wall-bound phenolics and how the (cellulose+hemicelloses)/pectin ratio was linked to cell wall thickness (Tcw) variations.


Assuntos
Helianthus , Células do Mesofilo , Dióxido de Carbono/metabolismo , Parede Celular/metabolismo , Difusão , Fotossíntese , Folhas de Planta , Água/metabolismo , Privação de Água
10.
J Plant Physiol ; 244: 153084, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31812907

RESUMO

Environmental conditions determine plants performance as they shape - among other key factors - leaf features and physiology. However, little is known regarding to the changes occurring in leaf cell wall composition during the acclimation to an environmental stress and, specially, if these changes have an impact on other leaf physiology aspects. In order to induce changes in photosynthesis, leaf water relations and cell wall main components (i.e., cellulose, hemicelluloses and pectins) and see how they co-vary, Vitis vinifera cv. Grenache was tested under four different conditions: (i) non-stress conditions (i.e., control, with high summer temperature and irradiance), (ii) growth chamber conditions, (iii) growth chamber under water stress and (iv) cold growth chamber. Plants developed in growth chambers decreased net CO2 assimilation (AN) and mesophyll conductance (gm) compared to control. Although cold did not change the bulk modulus of elasticity (ε), it decreased in growth chamber conditions and water stress. Control treatment showed the highest values for photosynthetic parameters and ε as well as for leaf structural traits such as leaf mass area (LMA) and leaf density (LD). Whereas cellulose content correlated with photosynthetic parameters, particularly AN and gm, pectins and the amount of alcohol insoluble residue (AIR) - an approximation of the isolated cell wall fraction - correlated with leaf water parameters, specifically, ε. Although preliminary, our results suggest that cell wall modifications due to environmental acclimations can play a significant role in leaf physiology by affecting distinctly photosynthesis and water relations in a manner that might depend on environmental conditions.


Assuntos
Fotossíntese , Folhas de Planta/fisiologia , Vitis/fisiologia , Água/metabolismo , Parede Celular/fisiologia , Estações do Ano , Estresse Fisiológico
11.
New Phytol ; 222(3): 1256-1270, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30623444

RESUMO

Photosynthesis in bryophytes and lycophytes has received less attention than terrestrial plant groups. In particular, few studies have addressed the nonstomatal diffusion conductance to CO2 gnsd of these plant groups. Their lower photosynthetic rate per leaf mass area at any given nitrogen concentration compared with vascular plants suggested a stronger limitation by CO2 diffusion. We hypothesized that bryophyte and lycophyte photosynthesis is largely limited by low gnsd . Here, we studied CO2 diffusion inside the photosynthetic tissues and its relationships with photosynthesis and anatomical parameters in bryophyte and lycophyte species in Antarctica, Australia, Estonia, Hawaii and Spain. On average, lycophytes and, specially, bryophytes had the lowest photosynthetic rates and nonstomatal diffusion conductance reported for terrestrial plants. These low values are related to their very thick cell walls and their low exposure of chloroplasts to cell perimeter. We conclude that the reason why bryophytes lie at the lower end of the leaf economics spectrum is their strong nonstomatal diffusion conductance limitation to photosynthesis, which is driven by their specific anatomical characteristics.


Assuntos
Briófitas/anatomia & histologia , Briófitas/fisiologia , Lycopodiaceae/anatomia & histologia , Lycopodiaceae/fisiologia , Fotossíntese , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Biomassa , Difusão , Geografia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA