Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 666935, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968070

RESUMO

Mycosis fungoides (MF) is the most common primary cutaneous T-cell lymphoma. While initially restricted to the skin, malignant cells can appear in blood, bone marrow and secondary lymphoid organs in later disease stages. However, only little is known about phenotypic and functional properties of malignant T cells in relationship to tissue environments over the course of disease progression. We thus profiled the tumor micromilieu in skin, blood and lymph node in a patient with advanced MF using single-cell RNA sequencing combined with V-D-J T-cell receptor sequencing. In skin, we identified clonally expanded T-cells with characteristic features of tissue-resident memory T-cells (TRM, CD69+CD27-NR4A1+RGS1+AHR+ ). In blood and lymph node, the malignant clones displayed a transcriptional program reminiscent of a more central memory-like phenotype (KLF2+TCF7+S1PR1+SELL+CCR7+ ), while retaining tissue-homing receptors (CLA, CCR10). The skin tumor microenvironment contained potentially tumor-permissive myeloid cells producing regulatory (IDO1) and Th2-associated mediators (CCL13, CCL17, CCL22). Given their expression of PVR, TNFRSF14 and CD80/CD86, they might be under direct control by TIGIT+CTLA4+CSF2+TNFSF14+ tumor cells. In sum, this study highlights the adaptive phenotypic and functional plasticity of MF tumor cell clones. Thus, the TRM-like phenotype enables long-term skin residence of MF cells. Their switch to a TCM-like phenotype with persistent skin homing molecule expression in the circulation might explain the multi-focal nature of MF.


Assuntos
Micose Fungoide/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Cutâneas/patologia , Linfócitos T/patologia , Idoso , Antígenos CD/biossíntese , Antígenos CD/genética , Antígenos de Neoplasias/biossíntese , Antígenos de Neoplasias/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Memória Imunológica , Linfonodos/metabolismo , Micose Fungoide/genética , Micose Fungoide/metabolismo , Células-Tronco Neoplásicas/química , Análise de Sequência de RNA , Pele/citologia , Pele/imunologia , Linfócitos T/química , Microambiente Tumoral
2.
Front Immunol ; 12: 630892, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717163

RESUMO

Atopic dermatitis (AD) typically starts in infancy or early childhood, showing spontaneous remission in a subset of patients, while others develop lifelong disease. Despite an increased understanding of AD, factors guiding its natural course are only insufficiently elucidated. We thus performed suction blistering in skin of adult patients with stable, spontaneous remission from previous moderate-to-severe AD during childhood. Samples were compared to healthy controls without personal or familial history of atopy, and to chronic, active AD lesions. Skin cells and tissue fluid obtained were used for single-cell RNA sequencing and proteomic multiplex assays, respectively. We found overall cell composition and proteomic profiles of spontaneously healed AD to be comparable to healthy control skin, without upregulation of typical AD activity markers (e.g., IL13, S100As, and KRT16). Among all cell types in spontaneously healed AD, melanocytes harbored the largest numbers of differentially expressed genes in comparison to healthy controls, with upregulation of potentially anti-inflammatory markers such as PLA2G7. Conventional T-cells also showed increases in regulatory markers, and a general skewing toward a more Th1-like phenotype. By contrast, gene expression of regulatory T-cells and keratinocytes was essentially indistinguishable from healthy skin. Melanocytes and conventional T-cells might thus contribute a specific regulatory milieu in spontaneously healed AD skin.


Assuntos
Dermatite Atópica/imunologia , Melanócitos/fisiologia , Pele/imunologia , Linfócitos T/imunologia , Adulto , Dermatite Atópica/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , Transcriptoma , Adulto Jovem
3.
J Allergy Clin Immunol ; 146(5): 1056-1069, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32344053

RESUMO

BACKGROUND: Atopic dermatitis (AD) is the most common chronic inflammatory skin disease, but its complex pathogenesis is only insufficiently understood, resulting in still limited treatment options. OBJECTIVE: We sought to characterize AD on both transcriptomic and proteomic levels in humans. METHODS: We used skin suction blistering, a painless and nonscarring procedure that can simultaneously sample skin cells and interstitial fluid. We then compared results with conventional biopsies. RESULTS: Suction blistering captured epidermal and most immune cells equally well as biopsies, except for mast cells and nonmigratory CD163+ macrophages that were only present in biopsy isolates. Using single-cell RNA sequencing, we found comparable transcriptional profiles of key inflammatory pathways between blister and biopsy AD, but suction blistering was superior in cell-specific resolution for high-abundance transcripts (KRT1/KRT10, KRT16/KRT6A, S100A8/S100A9), which showed some background signals in biopsy isolates. Compared with healthy controls, we found characteristic upregulation of AD-typical cytokines such as IL13 and IL22 in Th2 and Th22 cells, respectively, but we also discovered these mediators in proliferating T cells and natural killer T cells, that also expressed the antimicrobial cytokine IL26. Overall, not T cells, but myeloid cells were most strongly enriched in AD, and we found dendritic cell (CLEC7A, amphiregulin/AREG, EREG) and macrophage products (CCL13) among the top upregulated proteins in AD blister fluid proteomic analyses. CONCLUSION: These data show that by using cutting-edge technology, suction blistering offers several advantages over conventional biopsies, including better transcriptomic resolution of skin cells, combined with proteomic information from interstitial fluid, unraveling novel inflammatory players that shape the cellular and proteomic microenvironment of AD.


Assuntos
Dermatite Atópica/imunologia , Líquido Extracelular/metabolismo , Perfilação da Expressão Gênica/métodos , Células Mieloides/imunologia , Proteômica/métodos , Análise de Célula Única/métodos , Células Th2/imunologia , Calgranulina A/genética , Movimento Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Imunomodulação , Queratina-1/genética , Lectinas Tipo C/metabolismo , Proteínas Quimioatraentes de Monócitos/metabolismo , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA