Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 470: 115066, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38801950

RESUMO

The nucleus reuniens (RE) of the ventral midline thalamus is a critical node in the communication between the orbitomedial prefrontal cortex (OFC) and the hippocampus (HF). While RE has been shown to directly participate in memory-associated functions through its connections with the medial prefrontal cortex and HF, less is known regarding the role of RE in executive functioning. Here, we examined the involvement of RE and its projections to the orbital cortex (ORB) in attention and behavioral flexibility in male rats using the attentional set shifting task (AST). Rats expressing the hM4Di DREADD receptor in RE were implanted with indwelling cannulas in either RE or the ventromedial ORB to pharmacologically inhibit RE or its projections to the ORB with intracranial infusions of clozapine-N-oxide hydrochloride (CNO). Chemogenetic-induced suppression of RE resulted in impairments in reversal learning and set-shifting. This supports a vital role for RE in behavioral flexibility - or the ability to adapt behavior to changing reward or rule contingencies. Interestingly, CNO suppression of RE projections to the ventromedial ORB produced impairments in rule abstraction - or dissociable effects elicited with direct RE suppression. In summary, the present findings indicate that RE, mediated in part by actions on the ORB, serves a critical role in the flexible use of rules to drive goal directed behavior. The cognitive deficits of various neurological disorders with impaired communication between the HF and OFC, may be partly attributed to alterations of RE -- as an established intermediary between these cortical structures.


Assuntos
Atenção , Clozapina , Função Executiva , Núcleos da Linha Média do Tálamo , Córtex Pré-Frontal , Reversão de Aprendizagem , Animais , Masculino , Atenção/efeitos dos fármacos , Atenção/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Núcleos da Linha Média do Tálamo/efeitos dos fármacos , Núcleos da Linha Média do Tálamo/fisiologia , Reversão de Aprendizagem/efeitos dos fármacos , Reversão de Aprendizagem/fisiologia , Ratos , Clozapina/farmacologia , Clozapina/análogos & derivados , Função Executiva/fisiologia , Função Executiva/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Ratos Long-Evans , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia
2.
J Comp Neurol ; 531(2): 217-237, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36226328

RESUMO

The orbital cortex (ORB) of the rat consists of five divisions: the medial (MO), ventral (VO), ventrolateral (VLO), lateral (LO), and dorsolateral (DLO) orbital cortices. No previous report has comprehensively examined and compared projections from each division of the ORB to the thalamus. Using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin, we describe the efferent projections from the five divisions of the ORB to the thalamus in the rat. We demonstrated that, with some overlap, each division of the ORB distributed in a distinct (and unique) manner to nuclei of the thalamus. Overall, ORB projected to a relatively restricted number of sites in the thalamus, and strikingly distributed entirely to structures of the medial/midline thalamus, while completely avoiding lateral regions or principal nuclei of the thalamus. The main termination sites in the thalamus were the paratenial nucleus (PT) and nucleus reuniens (RE) of the midline thalamus, the medial (MDm) and central (MDc) divisions of the mediodorsal nucleus, the intermediodorsal nucleus, the central lateral, paracentral, and central medial nuclei of the rostral intralaminar complex and the submedial nucleus (SM). With some exceptions, medial divisions of the ORB (MO, VO) mainly targeted "limbic-associated" nuclei such as PT, RE, and MDm, whereas lateral division (VLO, LO, DLO) primarily distributed to "sensorimotor-associated" nuclei including MDc, SM, and the rostral intralaminar complex. As discussed herein, the medial/midline thalamus may represent an important link (or bridge) between the orbital cortex and the hippocampus and between the ORB and medial prefrontal cortex. In summary, the present results demonstrate that each division of the orbital cortex projects in a distinct manner to nuclei of the thalamus which suggests unique functions for each division of the orbital cortex.


Assuntos
Núcleos Intralaminares do Tálamo , Córtex Pré-Frontal , Animais , Ratos , Tálamo , Núcleos da Linha Média do Tálamo , Hipocampo , Fito-Hemaglutininas , Vias Neurais
3.
Front Behav Neurosci ; 16: 964644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082310

RESUMO

The midline and intralaminar nuclei of the thalamus form a major part of the "limbic thalamus;" that is, thalamic structures anatomically and functionally linked with the limbic forebrain. The midline nuclei consist of the paraventricular (PV) and paratenial nuclei, dorsally and the rhomboid and nucleus reuniens (RE), ventrally. The rostral intralaminar nuclei (ILt) consist of the central medial (CM), paracentral (PC) and central lateral (CL) nuclei. We presently concentrate on RE, PV, CM and CL nuclei of the thalamus. The nucleus reuniens receives a diverse array of input from limbic-related sites, and predominantly projects to the hippocampus and to "limbic" cortices. The RE participates in various cognitive functions including spatial working memory, executive functions (attention, behavioral flexibility) and affect/fear behavior. The PV receives significant limbic-related afferents, particularly the hypothalamus, and mainly distributes to "affective" structures of the forebrain including the bed nucleus of stria terminalis, nucleus accumbens and the amygdala. Accordingly, PV serves a critical role in "motivated behaviors" such as arousal, feeding/consummatory behavior and drug addiction. The rostral ILt receives both limbic and sensorimotor-related input and distributes widely over limbic and motor regions of the frontal cortex-and throughout the dorsal striatum. The intralaminar thalamus is critical for maintaining consciousness and directly participates in various sensorimotor functions (visuospatial or reaction time tasks) and cognitive tasks involving striatal-cortical interactions. As discussed herein, while each of the midline and intralaminar nuclei are anatomically and functionally distinct, they collectively serve a vital role in several affective, cognitive and executive behaviors - as major components of a brainstem-diencephalic-thalamocortical circuitry.

4.
Hippocampus ; 31(7): 756-769, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33476077

RESUMO

The nucleus reuniens (RE) and rhomboid (RH) nuclei of the ventral midline thalamus are reciprocally connected with the prefrontal cortex (PFC) and the hippocampus (HF) and serve as key intermediaries between these structures, regulating cognitive and emotional behaviors. Regarding affective behavior, several recent reports have described the involvement of RE/RH in the acquisition and retention of conditioned fear, but little is known regarding their role (RE/RH) in anxiety-like behaviors. We examined the role of RH/RE on avoidance and defensive behaviors in male Long Evans rats using the elevated plus maze (EPM). We found that the reversible suppression of RE/RH with muscimol increased avoidance behavior to the open arms of the plus maze as shown by: (a) significant reductions in open arm entries; (b) reductions in the mean duration of time spent in the open arms; and (c) significant increases in retreats during open arm exploration. This was coupled with decreases in the number of head dips in the maze. Consistent with these behavioral effects, a single exposure of naïve rats to the plus maze produced significant increases in c-fos expression selectively in RE and RH of midline thalamic nuclei. We posit that RE/RH normally acts to optimize adaptive responses to anxiety-eliciting situations, and disruptions of RE/RH produce severe deficits in coping behaviors-or as shown here increases in avoidance/defensive behaviors. In sum, the present results establish a novel role for RE/RH in anxiety-like avoidance behavior. In addition to its role in attention, working memory, and executive control, RE/RH also regulates adaptative responses to not only fear but also to anxiogenic stimuli. As such, dysfunction of RE/RH may contribute to the amalgamation of symptoms common to many mental health disorders including anxiety, depression, schizophrenia, and PTSD.


Assuntos
Aprendizagem da Esquiva , Núcleos da Linha Média do Tálamo , Animais , Ansiedade , Masculino , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA