Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Int ; 325: 110879, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34174769

RESUMO

Tsantsas are shrunken human heads originally made for ceremonial purposes by Amazonian indigenous groups of the Shuar and Achuar family, previously called Jivaroan tribes. A significant demand of these objects during the first half of the 20th century led to the manufacture of counterfeit shrunken heads for commercial purposes. For museums where these collections are held, as well as for the indigenous groups who claim their ownership, it is important to identify the origin and authenticity of these tsantsas. We hypothesized that a collection of 14 tsantsas from 3 different museum collections in Ecuador are human and aimed to characterize their sex and potential origin. We amplified the amelogenin gene and performed a high resolution melting analysis to determine their human origin and characterize their sex. We also analyzed a fragment (16209-16402) from the HVR-1 region to identify the mtDNA haplogroups present in the tsantsa collection. Our exploratory results show that all the tsantsas are human and that the collection is comprised of 13 males and 1 female. A total of seven mtDNA haplogroups were found among the tsantsa collection using the mtDNA EMPOP database. These results show a predominance of the Amerindian mtDNA haplogroups B, C and D. Additional principal component analysis, genetic distance tree and haplotype network analyses suggest a relationship between the tsantsa specimens and Native American groups.


Assuntos
Amelogenina/genética , DNA Mitocondrial/genética , Análise para Determinação do Sexo , Crânio , Antropologia Cultural/história , Equador , Etnicidade/genética , Feminino , Genética Forense , Haplótipos , História do Século XIX , História do Século XX , Humanos , Masculino , Museus
2.
JAMA Ophthalmol ; 137(9): 1005-1012, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31246245

RESUMO

IMPORTANCE: Keratoconus is an important cause of visual loss in young adults, but little is known about its genetic causes. Understanding the genetic determinants of corneal biomechanical factors may in turn teach us about keratoconus etiology. OBJECTIVES: To identify genetic associations with corneal biomechanical properties and to examine whether these genetic variants are associated with keratoconus. DESIGN, SETTING, AND PARTICIPANTS: A stage 1 discovery and replication genome-wide association study (GWAS) of corneal biomechanical properties was performed in 2 cross-sectional populations (6645 participants from the European Prospective Investigation into Cancer and Nutrition [EPIC]-Norfolk Eye Study and 2384 participants from the TwinsUK study). In stage 2, the association of genetic determinants identified in stage 1 with keratoconus was examined in a case-control study. A total of 752 patients with keratoconus were compared with 974 TwinsUK participants (undergoing direct sequencing) or 13 828 EPIC-Norfolk participants (undergoing genotyping and imputation) who were not part of the stage 1 analysis. Data were collected from March 1, 1993, through March 13, 2017, and analyzed from November 1, 2015, through February 1, 2018. EXPOSURES: In stage 1, allele dosage at genome-wide single-nucleotide polymorphisms (SNPs); in stage 2, allele dosage at SNPs with genome-wide significance (P < 5 × 10-8) in stage 1 and not previously reported as associated with corneal disease. MAIN OUTCOMES AND MEASURES: In stage 1, corneal hysteresis (CH) and corneal resistance factor (CRF), measured with the Ocular Response Analyzer (ORA); in stage 2, association with keratoconus compared with controls. RESULTS: Among 6645 participants in the discovery cohort (3635 women (54.7%); mean age, 69 years [range, 48-92 years]), 7 genome-wide significant loci associated with CH or CRF were identified that were independently replicated. Two further suggestive loci were identified after meta-analysis. To date, 5 of the identified loci, at ANAPC1, ADAMTS8, ADAMTS17, ABCA6, and COL6A1, have not previously been reported as associated with corneal disease. The ABCA6 locus (rs77542162) was associated with keratoconus using the TwinsUK (odds ratio [OR], 0.50; 95% CI, 0.27-0.92; P = .03) and EPIC-Norfolk controls (OR, 0.39; 95% CI, 0.22-0.70; P = .002). The other loci were associated with keratoconus using TwinsUK (OR per effect allele for ADAMTS8, 0.51 [95% CI, 0.37-0.71; P = 7.9 × 10-5]; for COL6A1, 1.65 [95% CI, 1.05-2.59; P = .03]) or EPIC-Norfolk (OR per effect allele for ANAPC1, 0.78 [95% CI, 0.68-0.89; P = 3.7 × 10-4]; for ADAMTS17, 0.82 [95% CI, 0.68-0.99; P = .04]) controls. CONCLUSIONS AND RELEVANCE: Five loci that are associated with corneal biomechanical properties and that have suggestive associations with keratoconus were reported. These findings suggest the role of type VI collagen, extracellular matrix, and connective-tissue development for corneal biomechanics and keratoconus and the role of CH and CRF as biomarkers for keratoconus.

3.
Exp Eye Res ; 182: 160-166, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30851240

RESUMO

The aim of this study was to identify the molecular genetic cause of disease in posterior polymorphous corneal dystrophy (PPCD) probands of diverse origin and to assess the utility of massively parallel sequencing in the detection of ZEB1 mutations. We investigated a total of 12 families (five British, four Czech, one Slovak and two Swiss). Ten novel and two recurrent disease-causing mutations in ZEB1, were identified in probands by Sanger (n = 5), exome (n = 4) and genome (n = 3) sequencing. Sanger sequencing was used to confirm the mutations detected by massively parallel sequencing, and to perform segregation analysis. Genome sequencing revealed that one proband harboured a novel ∼0.34 Mb heterozygous de novo deletion spanning exons 1-7 and part of exon 8. Transcript analysis confirmed that the ZEB1 transcript is detectable in blood-derived RNA samples and that the disease-associated variant c.482-2A>G leads to aberrant pre-mRNA splicing. De novo mutations, which are a feature of PPCD3, were found in the current study with an incidence rate of at least 16.6%. In general, massively parallel sequencing is a time-efficient way to detect PPCD3-associated mutations and, importantly, genome sequencing enables the identification of full or partial heterozygous ZEB1 deletions that can evade detection by both Sanger and exome sequencing. These findings contribute to our understanding of PPCD3, for which currently, 49 pathogenic variants have been identified, all of which are predicted to be null alleles.


Assuntos
Distrofias Hereditárias da Córnea/genética , DNA/genética , Mutação , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Adolescente , Adulto , Idoso , Sequência de Bases , Criança , Pré-Escolar , Distrofias Hereditárias da Córnea/diagnóstico , Distrofias Hereditárias da Córnea/metabolismo , Análise Mutacional de DNA , Éxons , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Linhagem , Deleção de Sequência , Adulto Jovem , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Dedos de Zinco
4.
Am J Hum Genet ; 102(3): 447-459, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499165

RESUMO

In a large family of Czech origin, we mapped a locus for an autosomal-dominant corneal endothelial dystrophy, posterior polymorphous corneal dystrophy 4 (PPCD4), to 8q22.3-q24.12. Whole-genome sequencing identified a unique variant (c.20+544G>T) in this locus, within an intronic regulatory region of GRHL2. Targeted sequencing identified the same variant in three additional previously unsolved PPCD-affected families, including a de novo occurrence that suggests this is a recurrent mutation. Two further unique variants were identified in intron 1 of GRHL2 (c.20+257delT and c.20+133delA) in unrelated PPCD-affected families. GRHL2 is a transcription factor that suppresses epithelial-to-mesenchymal transition (EMT) and is a direct transcriptional repressor of ZEB1. ZEB1 mutations leading to haploinsufficiency cause PPCD3. We previously identified promoter mutations in OVOL2, a gene not normally expressed in the corneal endothelium, as the cause of PPCD1. OVOL2 drives mesenchymal-to-epithelial transition (MET) by directly inhibiting EMT-inducing transcription factors, such as ZEB1. Here, we demonstrate that the GRHL2 regulatory variants identified in PPCD4-affected individuals induce increased transcriptional activity in vitro. Furthermore, although GRHL2 is not expressed in corneal endothelial cells in control tissue, we detected GRHL2 in the corneal "endothelium" in PPCD4 tissue. These cells were also positive for epithelial markers E-Cadherin and Cytokeratin 7, indicating they have transitioned to an epithelial-like cell type. We suggest that mutations inducing MET within the corneal endothelium are a convergent pathogenic mechanism leading to dysfunction of the endothelial barrier and disease.


Assuntos
Distrofias Hereditárias da Córnea/genética , Proteínas de Ligação a DNA/genética , Mutação/genética , Fatores de Transcrição/genética , Sequência de Bases , DNA Intergênico/genética , Endotélio Corneano/patologia , Família , Feminino , Loci Gênicos , Células HEK293 , Humanos , Íntrons/genética , Masculino , Modelos Genéticos , Linhagem , Regiões Promotoras Genéticas/genética , Transcrição Gênica , Sequenciamento Completo do Genoma
5.
Invest Ophthalmol Vis Sci ; 57(13): 5407-5414, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27737463

RESUMO

PURPOSE: The majority of anterior corneal dystrophies are caused by dominant mutations in TGFBI (transforming growth factor ß-induced) collectively known as the epithelial-stromal TGFBI dystrophies. Most cases of epithelial basement membrane dystrophy (EBMD) are thought to result from a degenerative (nongenetic) process; however, a minority of cases are associated with specific TGFBI mutations. We evaluated the spectrum of TGFBI mutations and associated phenotypes in a United Kingdom cohort with typical epithelial-stromal TGFBI dystrophies and an EBMD cohort. METHODS: We recruited 68 probands with a clinical diagnosis of epithelial-stromal TGFBI dystrophy and 23 probands with bilateral EBMD. DNA was extracted from peripheral leukocytes, and TGFBI was bi-directly Sanger sequenced. RESULTS: Nine TGFBI mutations were identified. The most common occurred at the mutation hot-spot residues R124 and R555 in 61 probands; these individuals had a genotype-phenotype correlation consistent with prior reports. Four probands with lattice corneal dystrophy carried a mutation in exon 14: p.(A620D), p.(V625D), and p.(H626R). We identified a p.(G623D) mutation in five probands, including two probands from the EBMD cohort. These subjects typically had an onset of severe recurrent corneal epithelial erosion in the fourth decade with mild diffuse or geographic subepithelial corneal opacities and only small anterior stromal lattice structures in older individuals. Symptoms of painful epithelial erosion improved markedly following phototherapeutic keratectomy. CONCLUSIONS: There was a strong correlation between genotype and phenotype for the majority of TGFBI mutations. In this cohort, the p.(G623D) mutation caused a greater proportion of TGFBI-associated disease than anticipated, associated with variable phenotypes including individuals diagnosed with EBMD.


Assuntos
Membrana Basal/patologia , Córnea/patologia , Distrofias Hereditárias da Córnea/genética , DNA/genética , Mutação , Fator de Crescimento Transformador beta1/genética , Adulto , Membrana Basal/metabolismo , Córnea/metabolismo , Distrofias Hereditárias da Córnea/diagnóstico , Distrofias Hereditárias da Córnea/metabolismo , Análise Mutacional de DNA , Éxons , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Microscopia Acústica , Linhagem , Fenótipo , Fator de Crescimento Transformador beta1/metabolismo
6.
Mol Microbiol ; 96(4): 887-900, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25708978

RESUMO

The Trypanosoma brucei aminopurine transporter P2/TbAT1 has long been implicated in the transport of, and resistance to, the diamidine and melaminophenyl arsenical classes of drugs that form the backbone of the pharmacopoeia against African trypanosomiasis. Genetic alterations including deletions and single nucleotide polymorphisms (SNPs) have been observed in numerous strains and clinical isolates. Here, we systematically investigate each reported mutation and assess their effects on transporter function after expression in a tbat1(-/-) T. brucei line. Out of a set of six reported SNPs from a reported 'resistance allele', none significantly impaired sensitivity to pentamidine, diminazene or melarsoprol, relative to the TbAT1-WT allele, although several combinations, and the deletion of the codon for residue F316, resulted in highly significant impairment. These combinations of SNPs, and ΔF316, also strongly impaired the uptake of [(3)H]-adenosine and [(3)H]-diminazene, identical to the tbat1(-/-) control. The TbAT1 protein model predicted that residues F19, D140 and F316 interact with the substrate of the transporter. Mutation of D140 to alanine resulted in an inactive transporter, whereas the mutation F19A produced a transporter with a slightly increased affinity for [(3)H]-diminazene but reduced the uptake rate. The results presented here validate earlier hypotheses of drug binding motifs for TbAT1.


Assuntos
Modelos Moleculares , Proteínas de Transporte de Nucleosídeos/química , Proteínas de Transporte de Nucleosídeos/genética , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética , Alelos , Diminazena/farmacologia , Resistência a Múltiplos Medicamentos/genética , Cinética , Melarsoprol/farmacologia , Mutação , Proteínas de Transporte de Nucleosídeos/metabolismo , Testes de Sensibilidade Parasitária , Pentamidina/farmacologia , Polimorfismo de Nucleotídeo Único , Domínios e Motivos de Interação entre Proteínas , Trypanosoma brucei brucei/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-24533295

RESUMO

It has long been established that the Trypanosoma brucei TbAT1/P2 aminopurine transporter is involved in the uptake of diamidine and arsenical drugs including pentamidine, diminazene aceturate and melarsoprol. Accordingly, it was proposed that the closest Trypanosoma congolense paralogue, TcoAT1, might perform the same function in this parasite, and an apparent correlation between a Single Nucleotide Polymorphism (SNP) in that gene and diminazene tolerance was reported for the strains examined. Here, we report the functional cloning and expression of TcoAT1 and show that in fact it is the syntenic homologue of another T. brucei gene of the same Equilibrative Nucleoside Transporter (ENT) family: TbNT10. The T. congolense genome does not seem to contain a syntenic equivalent to TbAT1. Two TcoAT1 alleles, differentiated by three independent SNPs, were expressed in the T. brucei clone B48, a TbAT1-null strain that further lacks the High Affinity Pentamidine Transporter (HAPT1); TbAT1 was also expressed as a control. The TbAT1 and TcoAT1 transporters were functional and increased sensitivity to cytotoxic nucleoside analogues. However, only TbAT1 increased sensitivity to diamidines and to cymelarsan. Uptake of [(3)H]-diminazene was detectable only in the B48 cells expressing TbAT1 but not TcoAT1, whereas uptake of [(3)H]-inosine was increased by both TcoAT1 alleles but not by TbAT1. Uptake of [(3)H]-adenosine was increased by all three ENT genes. We conclude that TcoAT1 is a P1-type purine nucleoside transporter and the syntenic equivalent to the previously characterised TbNT10; it does not mediate diminazene uptake and is therefore unlikely to play a role in diminazene resistance in T. congolense.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA