Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 12(6): e12333, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37328936

RESUMO

Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post-translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved in the correct folding of particular proteins. By limiting CCT cell-content by siRNA, cells undergo altered lipid composition and metabolic rewiring towards a lipid-dependent metabolism, with increased activity of peroxisomes and mitochondria. This is due to dysregulation of the dynamics of interorganelle contacts between lipid droplets, mitochondria, peroxisomes and the endolysosomal system. This process accelerates the biogenesis of multivesicular bodies leading to higher EV production through the dynamic regulation of microtubule-based kinesin motors. These findings connect proteostasis with lipid metabolism through an unexpected role of CCT.


Assuntos
Vesículas Extracelulares , Cinesinas , Cinesinas/metabolismo , Chaperonina com TCP-1/metabolismo , Vesículas Extracelulares/metabolismo , Metabolismo dos Lipídeos , Lipídeos
2.
Methods Mol Biol ; 2346: 105-120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32897513

RESUMO

The immune synapse (IS) enables cell-cell communication between immune cells through close contacts, as well as T-cell activation and vesicle secretion. It is sustained by fine-tuned molecular interactions of receptors at both cell sides of the IS and intracellular cytoskeletal components. The resulting intracellular polarization of different organelles, through cytoskeleton-guided vesicular traffic, is a key player in IS formation and signaling. We describe herein a method to analyze rapid changes of vesicle localization through microscopy analysis upon polarization toward the IS. These vesicles are monitored using the centrosome and its associated microtubular network or the actin-based structures as spatial references during the organization of the IS.


Assuntos
Comunicação Celular/imunologia , Vesículas Extracelulares/imunologia , Sinapses Imunológicas/imunologia , Linhagem Celular , Humanos
3.
Int J Mol Sci ; 21(8)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325900

RESUMO

The immune synapse (IS) is a well-known intercellular communication platform, organized at the interphase between the antigen presenting cell (APC) and the T cell. After T cell receptor (TCR) stimulation, signaling from plasma membrane proteins and lipids is amplified by molecules and downstream pathways for full synapse formation and maintenance. This secondary signaling event relies on intracellular reorganization at the IS, involving the cytoskeleton and components of the secretory/recycling machinery, such as the Golgi apparatus and the endolysosomal system (ELS). T cell activation triggers a metabolic reprogramming that involves the synthesis of lipids, which act as signaling mediators, and an increase of mitochondrial activity. Then, this mitochondrial activity results in elevated reactive oxygen species (ROS) production that may lead to cytotoxicity. The regulation of ROS levels requires the concerted action of mitochondria and peroxisomes. In this review, we analyze this reprogramming and the signaling implications of endolysosomal, mitochondrial, peroxisomal, and lipidic systems in T cell activation.


Assuntos
Endossomos/metabolismo , Metabolismo dos Lipídeos , Ativação Linfocitária/imunologia , Lisossomos/metabolismo , Peroxissomos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Reprogramação Celular/imunologia , Metabolismo Energético , Humanos , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo , Imunomodulação , Mitocôndrias/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA