Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Mol Cell Cardiol ; 189: 1-11, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387309

RESUMO

Persistent immune activation contributes significantly to left ventricular (LV) dysfunction and adverse remodeling in heart failure (HF). In contrast to their well-known essential role in acute myocardial infarction (MI) as first responders that clear dead cells and facilitate subsequent reparative macrophage polarization, the role of neutrophils in the pathobiology of chronic ischemic HF is poorly defined. To determine the importance of neutrophils in the progression of ischemic cardiomyopathy, we measured their production, levels, and activation in a mouse model of chronic HF 8 weeks after permanent coronary artery ligation and large MI. In HF mice, neutrophils were more abundant both locally in failing myocardium (more in the border zone) and systemically in the blood, spleen, and bone marrow, together with increased BM granulopoiesis. There were heightened stimuli for neutrophil recruitment and trafficking in HF, with increased myocardial expression of the neutrophil chemoattract chemokines CXCL1 and CXCL5, and increased neutrophil chemotactic factors in the circulation. HF neutrophil NETotic activity was increased in vitro with coordinate increases in circulating neutrophil extracellular traps (NETs) in vivo. Neutrophil depletion with either antibody-based or genetic approaches abrogated the progression of LV remodeling and fibrosis at both intermediate and late stages of HF. Moreover, analogous to murine HF, the plasma milieu in human acute decompensated HF strongly promoted neutrophil trafficking. Collectively, these results support a key tissue-injurious role for neutrophils and their associated cytotoxic products in ischemic cardiomyopathy and suggest that neutrophils are potential targets for therapeutic immunomodulation in this disease.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Isquemia Miocárdica , Humanos , Animais , Camundongos , Neutrófilos/metabolismo , Remodelação Ventricular , Miocárdio/metabolismo , Isquemia Miocárdica/metabolismo , Cardiomiopatias/metabolismo , Camundongos Endogâmicos C57BL
2.
JACC Basic Transl Sci ; 7(5): 465-483, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35663630

RESUMO

Heart failure (HF) is characterized by progressive fibrosis. Both fibroblasts and mesenchymal stem cells (MSCs) can differentiate into pro-fibrotic myofibroblasts. MSCs secrete and express platelet-derived growth factor (PDGF) and its receptors. We hypothesized that PDGF signaling in cardiac MSCs (cMSCs) promotes their myofibroblast differentiation and aggravates post-myocardial infarction left ventricular remodeling and fibrosis. We show that cMSCs from failing hearts post-myocardial infarction exhibit an altered phenotype. Inhibition of PDGF signaling in vitro inhibited cMSC-myofibroblast differentiation, whereas in vivo inhibition during established ischemic HF alleviated left ventricular remodeling and function, and decreased myocardial fibrosis, hypertrophy, and inflammation. Modulating cMSC PDGF receptor expression may thus represent a novel approach to limit pathologic cardiac fibrosis in HF.

3.
Am J Physiol Heart Circ Physiol ; 317(3): H658-H666, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31373510

RESUMO

Immune activation post-myocardial infarction is an orchestrated sequence of cellular responses to effect tissue repair and healing. However, excessive and dysregulated inflammation can result in left ventricular remodeling and pathological alterations in the structural and mechanical attributes of the heart. Identification of key pathways and critical cellular mediators of inflammation is thus essential to design immunomodulatory therapies for myocardial infarction and ischemic heart failure. Despite this, the experimental approaches to isolate mononuclear cells from the heart are diverse, and detailed protocols to enable maximum yield of live cells in the shortest time possible are not readily available. Here, we describe optimized protocols for the isolation, fixation, and flow cytometric characterization of cardiac CD45+ leukocytes. These protocols circumvent time-consuming coronary perfusion and density-mediated cell-separation steps, resulting in high cellular yields from cardiac digests devoid of contaminating intravascular cells. Moreover, in contrast to methanol and acetone, we show that cell fixation using 1% paraformaldehyde is most optimal as it does not affect antibody binding or cellular morphology, thereby providing a considerable advantage to study activation/infiltration-associated changes in cellular granularity and size. These are highly versatile methods that can easily be streamlined for studies requiring simultaneous isolation of immune cells from different tissues or deployment in studies containing a large cohort of samples with time-sensitive constraints.NEW & NOTEWORTHY In this article, we describe optimized protocols for the isolation, fixation, and flow cytometric analysis of immune cells from the ischemic/nonischemic hearts. These protocols are optimized to process several samples/tissues, simultaneously enabling maximal yield of immune cells in the shortest time possible. We show that the low-speed centrifugation can be used as an effective alternative to lengthy coronary perfusion to remove intravascular cells, and sieving through 40-µm filter can replace density-mediated mononuclear cell separation which usually results in 50-70% cell loss in the sedimented pellets. We also show that cell fixation using 1% paraformaldehyde is better than the organic solvents such as methanol and acetone for flow cytometric analysis.


Assuntos
Separação Celular/métodos , Fixadores/química , Citometria de Fluxo/métodos , Leucócitos/imunologia , Infarto do Miocárdio/imunologia , Miocárdio/imunologia , Fixação de Tecidos/métodos , Animais , Biomarcadores/análise , Centrifugação com Gradiente de Concentração , Modelos Animais de Doenças , Imunofenotipagem , Antígenos Comuns de Leucócito/análise , Leucócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Miocárdio/patologia
4.
Basic Res Cardiol ; 114(5): 32, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278427

RESUMO

The role of cyclooxygenase-2 (COX-2) in cardiovascular biology remains controversial. Although COX-2 has been reported to mediate the protective actions of late preconditioning, other studies show that it is also an important mediator of inflammation, toxic shock, and apoptosis, resulting in significant dysfunction and injury in several tissues. To determine whether increased myocardial COX-2, in itself, is protective, cardiac-specific, inducible (Tet-off) COX-2 transgenic (iCOX-2 TG) mice were generated by crossbreeding α-MyHC-tTA transgenic mice (tetracycline transactivator [tTA]) with CMV/TRE-COX-2 transgenic mice. Three months after COX-2 induction, mice were subjected to a 30-min coronary occlusion and 24 h of reperfusion. Three different lines (L5, L7, and L8) of iCOX-2 TG mice were studied; in all three lines, infarct size was markedly reduced compared with WT mice: L5 TG/TG 23.4 ± 5.8 vs. WT/WT 48.5 ± 6.1% of risk region; L7 TG/TG 23.2 ± 6.2 vs. WT/WT 53.3 ± 3.6%; and L8 TG/TG 23.5 ± 2.8 vs. WT/WT 52.7 ± 4.6% (P < 0.05 for each). COX-2 inhibition with NS-398 completely abolished the cardioprotection provided by COX-2 overexpression. This study for the first time utilizes an inducible cardiac-specific COX-2 overexpression system to examine the role of this enzyme in ischemia/reperfusion injury in vivo. We demonstrate that induced cardiac-specific overexpression of COX-2 exerts a potent cardioprotective effect against myocardial infarction in mice, and that chronic COX-2 overexpression is not associated with any apparent deleterious effects. We also show that PGE2 levels are upregulated in COX-2 overexpressing cardiac tissue, confirming increased enzyme activity. Finally, we have developed a valuable genetic tool to further our understanding of the role of COX-2 in ischemia/reperfusion injury and other settings. The concept that COX-2 is chronically protective has important therapeutic implications for studies of long-term gene therapy aimed at increasing myocardial COX-2 content as well as other COX-2- based strategies.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/enzimologia , Animais , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/enzimologia
7.
Circulation ; 139(2): 206-221, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30586716

RESUMO

BACKGROUND: Heart failure (HF) is a state of inappropriately sustained inflammation, suggesting the loss of normal immunosuppressive mechanisms. Regulatory T-lymphocytes (Tregs) are considered key suppressors of immune responses; however, their role in HF is unknown. We hypothesized that Tregs are dysfunctional in ischemic cardiomyopathy and HF, and they promote immune activation and left ventricular (LV) remodeling. METHODS: Adult male wild-type C57BL/6 mice, Foxp3-diphtheria toxin receptor transgenic mice, and tumor necrosis factor (TNF) α receptor-1 (TNFR1)-/- mice underwent nonreperfused myocardial infarction to induce HF or sham operation. LV remodeling was assessed by echocardiography as well as histological and molecular phenotyping. Alterations in Treg profile and function were examined by flow cytometry, immunostaining, and in vitro cell assays. RESULTS: Compared with wild-type sham mice, CD4+Foxp3+ Tregs in wild-type HF mice robustly expanded in the heart, circulation, spleen, and lymph nodes in a phasic manner after myocardial infarction, beyond the early phase of wound healing, and exhibited proinflammatory T helper 1-type features with interferon-γ, TNFα, and TNFR1 expression, loss of immunomodulatory capacity, heightened proliferation, and potentiated antiangiogenic and profibrotic properties. Selective Treg ablation in Foxp3-diphtheria toxin receptor mice with ischemic cardiomyopathy reversed LV remodeling and dysfunction, alleviating hypertrophy and fibrosis, while suppressing circulating CD4+ T cells and systemic inflammation and enhancing tissue neovascularization. Tregs reconstituted after ablation exhibited restoration of immunosuppressive capacity and normalized TNFR1 expression. Treg dysfunction was also tightly coupled to Treg-endothelial cell contact- and TNFR1-dependent inhibition of angiogenesis and the mobilization and tissue infiltration of CD34+Flk1+ circulating angiogenic cells in a C-C chemokine ligand 5/C-C chemokine receptor 5-dependent manner. Anti-CD25-mediated Treg depletion in wild-type mice imparted similar benefits on LV remodeling, circulating angiogenic cells, and tissue neovascularization. CONCLUSIONS: Proinflammatory and antiangiogenic Tregs play an essential pathogenetic role in chronic ischemic HF to promote immune activation and pathological LV remodeling. The restoration of normal Treg function may be a viable approach to therapeutic immunomodulation in this disease.


Assuntos
Cardiomiopatias/imunologia , Mediadores da Inflamação/imunologia , Infarto do Miocárdio/imunologia , Linfócitos T Reguladores/imunologia , Função Ventricular Esquerda , Remodelação Ventricular , Proteínas Angiogênicas/metabolismo , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Fibrose , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/imunologia , Miocárdio/metabolismo , Miocárdio/patologia , Neovascularização Fisiológica , Fenótipo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/metabolismo
8.
JACC Basic Transl Sci ; 3(2): 230-244, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30062209

RESUMO

Although chronic inflammation is a central feature of heart failure (HF), the immune cell profiles differ with different underlying causes. This suggests that for immunomodulatory therapy in HF to be successful, it needs to be tailored to the specific etiology. Here, the authors demonstrate that monocyte-derived C-C chemokine receptor 2 (CCR2)+ macrophages infiltrate the heart early during pressure overload in mice, and that blocking this response either pharmacologically or with antibody-mediated CCR2+ monocyte depletion alleviates late pathological left ventricular remodeling and dysfunction, T-cell expansion, and cardiac fibrosis. Hence, suppression of CCR2+ monocytes/macrophages may be an important immunomodulatory therapeutic target to ameliorate pressure-overload HF.

9.
Circ Heart Fail ; 10(3): e003688, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28242779

RESUMO

BACKGROUND: Inappropriately sustained inflammation is a hallmark of chronic ischemic heart failure (HF); however, the pathophysiological role of T lymphocytes is unclear. METHODS AND RESULTS: Permanent coronary ligation was performed in adult C57BL/6 mice. When compared with sham-operated mice, mice with HF (8 weeks after ligation) exhibited the following features: (1) significant (P<0.05) expansion of circulating CD3+CD8+ cytotoxic and CD3+CD4+ helper (Th) T lymphocytes, together with increased Th1, Th2, Th17, and regulatory T-cell (Treg) CD4+ subsets; (2) significant expansion of CD8+ and CD4+ T cells in failing myocardium, with increased Th1, Th2, Th17, and Treg CD4+ subsets, marked reduction of the Th1/Th2 ratio, augmentation of the Th17/Treg ratio, and upregulation of Th2 cytokines; and (3) significantly increased Th1, Th2, Th17 cells, and Tregs, in the spleen and mediastinal lymph nodes, with expansion of splenic antigen-experienced effector and memory CD4+ T cells. Antibody-mediated CD4+ T-cell depletion in HF mice (starting 4 weeks after ligation) reduced cardiac infiltration of CD4+ T cells and prevented progressive left ventricular dilatation and hypertrophy, whereas adoptive transfer of splenic CD4+ T cells (and, to a lesser extent, cardiac CD3+ T cells) from donor mice with HF induced long-term left ventricular dysfunction, fibrosis, and hypertrophy in naive recipient mice. CONCLUSIONS: CD4+ T lymphocytes are globally expanded and activated in chronic ischemic HF, with Th2 (versus Th1) and Th17 (versus Treg) predominance in failing hearts, and with expansion of memory T cells in the spleen. Cardiac and splenic T cells in HF are primed to induce cardiac injury and remodeling, and retain this memory on adoptive transfer.


Assuntos
Insuficiência Cardíaca/imunologia , Ativação Linfocitária , Isquemia Miocárdica/imunologia , Miocárdio/imunologia , Subpopulações de Linfócitos T/imunologia , Função Ventricular Esquerda , Remodelação Ventricular , Transferência Adotiva , Animais , Proliferação de Células , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Memória Imunológica , Linfonodos/imunologia , Linfonodos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Fenótipo , Baço/imunologia , Baço/metabolismo , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Subpopulações de Linfócitos T/transplante , Fatores de Tempo
10.
Basic Res Cardiol ; 112(2): 19, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28238121

RESUMO

In the failing heart, iNOS is expressed by both macrophages and cardiomyocytes. We hypothesized that inflammatory cell-localized iNOS exacerbates left ventricular (LV) remodeling. Wild-type (WT) C57BL/6 mice underwent total body irradiation and reconstitution with bone marrow from iNOS-/- mice (iNOS-/-c) or WT mice (WTc). Chimeric mice underwent coronary ligation to induce large infarction and ischemic heart failure (HF), or sham surgery. After 28 days, as compared with WTc sham mice, WTc HF mice exhibited significant (p < 0.05) mortality, LV dysfunction, hypertrophy, fibrosis, oxidative/nitrative stress, inflammatory activation, and iNOS upregulation. These mice also exhibited a ~twofold increase in circulating Ly6Chi pro-inflammatory monocytes, and ~sevenfold higher cardiac M1 macrophages, which were primarily CCR2- cells. In contrast, as compared with WTc HF mice, iNOS-/-c HF mice exhibited significantly improved survival, LV function, hypertrophy, fibrosis, oxidative/nitrative stress, and inflammatory activation, without differences in overall cardiac iNOS expression. Moreover, iNOS-/-c HF mice exhibited lower circulating Ly6Chi monocytes, and augmented cardiac M2 macrophages, but with greater infiltrating monocyte-derived CCR2+ macrophages vs. WTc HF mice. Lastly, upon cell-to-cell contact with naïve cardiomyocytes, peritoneal macrophages from WT HF mice depressed contraction, and augmented cardiomyocyte oxygen free radicals and peroxynitrite. These effects were not observed upon contact with macrophages from iNOS-/- HF mice. We conclude that leukocyte iNOS is obligatory for local and systemic inflammatory activation and cardiac remodeling in ischemic HF. Activated macrophages in HF may directly induce cardiomyocyte contractile dysfunction and oxidant stress upon cell-to-cell contact; this juxtacrine response requires macrophage-localized iNOS.


Assuntos
Insuficiência Cardíaca/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Remodelação Ventricular/fisiologia , Animais , Western Blotting , Ecocardiografia , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Imuno-Histoquímica , Isquemia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
11.
Circ Res ; 120(5): e7-e23, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28137917

RESUMO

RATIONALE: Endothelial progenitor cells (EPCs) respond to stromal cell-derived factor 1 (SDF-1) through chemokine receptors CXCR7 and CXCR4. Whether SDF-1 receptors involves in diabetes mellitus-induced EPCs dysfunction remains unknown. OBJECTIVE: To determine the role of SDF-1 receptors in diabetic EPCs dysfunction. METHODS AND RESULTS: CXCR7 expression, but not CXCR4 was reduced in EPCs from db/db mice, which coincided with impaired tube formation. Knockdown of CXCR7 impaired tube formation of EPCs from normal mice, whereas upregulation of CXCR7 rescued angiogenic function of EPCs from db/db mice. In normal EPCs treated with oxidized low-density lipoprotein or high glucose also reduced CXCR7 expression, impaired tube formation, and increased oxidative stress and apoptosis. The damaging effects of oxidized low-density lipoprotein or high glucose were markedly reduced by SDF-1 pretreatment in EPCs transduced with CXCR7 lentivirus but not in EPCs transduced with control lentivirus. Most importantly, EPCs transduced with CXCR7 lentivirus were superior to EPCs transduced with control lentivirus for therapy of ischemic limbs in db/db mice. Mechanistic studies demonstrated that oxidized low-density lipoprotein or high glucose inhibited protein kinase B and glycogen synthase kinase-3ß phosphorylation, nuclear export of Fyn and nuclear localization of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), blunting Nrf2 downstream target genes heme oxygenase-1, NAD(P)H dehydrogenase (quinone 1) and catalase, and inducing an increase in EPC oxidative stress. This destructive cascade was blocked by SDF-1 treatment in EPCs transduced with CXCR7 lentivirus. Furthermore, inhibition of phosphatidylinositol 3-kinase/protein kinase B prevented SDF-1/CXCR7-mediated Nrf2 activation and blocked angiogenic repair. Moreover, Nrf2 knockdown almost completely abolished the protective effects of SDF-1/CXCR7 on EPC function in vitro and in vivo. CONCLUSIONS: Elevated expression of CXCR7 enhances EPC resistance to diabetes mellitus-induced oxidative damage and improves therapeutic efficacy of EPCs in treating diabetic limb ischemia. The benefits of CXCR7 are mediated predominantly by a protein kinase B/glycogen synthase kinase-3ß/Fyn pathway via increased activity of Nrf2.


Assuntos
Diabetes Mellitus/metabolismo , Células Progenitoras Endoteliais/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Isquemia/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores CXCR/biossíntese , Animais , Células Cultivadas , Diabetes Mellitus/patologia , Técnicas de Silenciamento de Genes , Células HEK293 , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Membro Posterior/patologia , Humanos , Isquemia/patologia , Masculino , Camundongos , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/metabolismo , Neovascularização Fisiológica/fisiologia , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Circ Res ; 118(7): 1091-105, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26838790

RESUMO

RATIONALE: Cardiac progenitor cells (CPCs) improve left ventricular remodeling and function after acute or chronic myocardial infarction. However, the long-term (>5 weeks) effects, potential tumorigenicity, and fate of transplanted CPCs are unknown. OBJECTIVE: To assess the outcome of CPC therapy at 1 year. METHODS AND RESULTS: Female rats underwent a 90-minute coronary occlusion; 4 hours after reperfusion, they received intracoronarily vehicle or 1 million male, syngeneic CPCs. One year later, CPC-treated rats exhibited smaller scars and more viable myocardium in the risk region, along with improved left ventricular remodeling and regional and global left ventricular function. No tumors were observed. Some transplanted (Y-chromosome(POS)) CPCs (or their progeny) persisted and continued to proliferate, but they failed to acquire a mature cardiomyocyte phenotype and were too few (4-8% of nuclei) to account for the benefits of CPC therapy. Surprisingly, CPC transplantation triggered a prolonged proliferative response of endogenous cells, resulting in increased formation of endothelial cells and Y-chromosome(NEG) CPCs for 12 months and increased formation, for at least 7 months, of small cells that expressed cardiomyocytic proteins (α-sarcomeric actin) but did not have a mature cardiomyocyte phenotype. CONCLUSIONS: The beneficial effects of CPCs on left ventricular remodeling and dysfunction are sustained for at least 1 year and thus are likely to be permanent. Because transplanted CPCs do not differentiate into mature myocytes, their major mechanism of action must involve paracrine actions. These paracrine mechanisms could be very prolonged because some CPCs engraft, proliferate, and persist at 1 year. This is the first report that transplantation of any cell type in the heart induces a proliferative response that lasts at least 1 year. The results strongly support the safety and clinical utility of CPC therapy.


Assuntos
Células-Tronco Adultas/transplante , Infarto do Miocárdio/terapia , Células-Tronco Adultas/química , Células-Tronco Adultas/citologia , Animais , Contagem de Células , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Replicação do DNA , Feminino , Hemodinâmica , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/patologia , Hibridização in Situ Fluorescente , Antígenos Comuns de Leucócito/análise , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-kit/análise , Ratos , Ratos Endogâmicos F344 , Método Simples-Cego , Fatores de Tempo , Ultrassonografia , Disfunção Ventricular Esquerda/etiologia
14.
Oncotarget ; 6(22): 18819-28, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26299919

RESUMO

The α-chemokine stromal-derived factor 1 (SDF-1), which binds to the CXCR4 receptor, directs migration and homing of CXCR4+ hematopoietic stem/progenitor cells (HSPCs) to bone marrow (BM) stem cell niches. Nevertheless, it is also known that CXCR4-/- fetal liver-derived hematopoietic stem cells engraft into BM and that blockade of CXCR4 by its antagonist AMD3100 does not prevent engraftment of HSPCs. Because of this finding of SDF-1-CXCR4-independent BM homing, the unique role of SDF-1 in HSPC homing has recently been challenged. While SDF-1 is the only chemokine that chemoattracts HSPCs, other chemoattractants for these cells have recently been described, including the bioactive phosphosphingolipid sphingosine-1-phosphate (S1P). To address the potential role of S1P in homing of HSPCs to BM, we performed hematopoietic transplants into mice deficient in BM-expressed sphingosine kinase 1 (Sphk1-/-) using hematopoietic cells from normal control mice as well as cells from mice in which floxed CXCR4 (CXCR4fl/fl) was conditionally deleted. We observed the presence of a homing and engraftment defect in HSPCs of Sphk1-/- mice that was particularly profound after transplantation of CXCR4-/- BM cells. Thus, our results indicate that BM-microenvironment-expressed S1P plays a role in homing of HSPCs. They also support the concept that, in addition to the SDF-1-CXCR4 axis, other chemotactic axes are also involved in homing and engraftment of HSPCs.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Condicionamento Pré-Transplante/métodos , Animais , Quimiocina CXCL12/metabolismo , Feminino , Masculino , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Nicho de Células-Tronco/fisiologia
15.
Circ Heart Fail ; 8(4): 757-65, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25995227

RESUMO

BACKGROUND: Although c-kit(pos) cardiac stem cells (CSCs) preserve left ventricular (LV) function and structure after myocardial infarction, CSC doses have been chosen arbitrarily, and the dose-effect relationship is unknown. METHODS AND RESULTS: Rats underwent a 90-minute coronary occlusion followed by 35 days of reperfusion. Vehicle or CSCs at 5 escalating doses (0.3×10(6), 0.75×10(6), 1.5×10(6), 3.0×10(6), and 6.0×10(6) cells/heart) were given intracoronarily 4 h after reperfusion. The lowest dose (0.3×10(6)) had no effect on LV function and morphology, whereas 0.75, 1.5, and 3.0×10(6) significantly improved regional and global LV function (echocardiography and hemodynamic studies). These 3 doses had similar effects on echocardiographic parameters (infarct wall thickening fraction, LV end-systolic and end-diastolic volumes, LV ejection fraction) and hemodynamic variables (LV end-diastolic pressure, LV dP/dtmax, preload adjusted maximal power, end-systolic elastance, preload recruitable stroke work) and produced similar reductions in apoptosis, scar size, infarct wall thinning, and LV expansion index and similar increases in viable myocardium in the risk region (morphometry). Infusion of 6.0×10(6) CSCs markedly increased postprocedural mortality. Green fluorescent protein and 5-bromo-2'-deoxyuridine staining indicated that persistence of donor cells and formation of new myocytes were negligible with all doses. CONCLUSIONS: Surprisingly, in this rat model of acute myocardial infarction, the dose-response relationship for intracoronary CSCs is flat. A minimal dose between 0.3 and 0.75×10(6) is necessary for efficacy; above this threshold, a 4-fold increase in cell number does not produce greater improvement in LV function or structure. Further increases in cell dose are harmful.


Assuntos
Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Miócitos Cardíacos/transplante , Regeneração , Transplante de Células-Tronco , Função Ventricular Esquerda , Animais , Apoptose , Biomarcadores/metabolismo , Capilares/fisiopatologia , Débito Cardíaco , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos Endogâmicos F344 , Recuperação de Função Fisiológica , Transplante de Células-Tronco/efeitos adversos , Células-Tronco/metabolismo , Fatores de Tempo , Sobrevivência de Tecidos , Ultrassonografia , Pressão Ventricular
16.
Basic Res Cardiol ; 110(3): 31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25911189

RESUMO

Diabetic patients suffer augmented severity of myocardial infarction. Excessive activation of the mammalian target of rapamycin (mTOR) and decreased activation of STAT3 are implicated in diabetic complications. Considering the potent cardioprotective effect of mTOR inhibitor, rapamycin, we hypothesized that reperfusion therapy with rapamycin would reduce infarct size in the diabetic hearts through STAT3 signaling. Hearts from adult male db/db or wild type (WT) C57 mice were isolated and subjected to 30 min of normothermic global ischemia and 60 min of reperfusion in Langendorff mode. Rapamycin (100 nM) was infused at the onset of reperfusion. Myocardial infarct size (IS) was significantly reduced in rapamycin-treated mice (13.3 ± 2.4 %) compared to DMSO vehicle control (35.9 ± 0.9 %) or WT mice (27.7 ± 1.1 %). Rapamycin treatment restored phosphorylation of STAT3 and enhanced AKT phosphorylation (target of mTORC2), but significantly reduced ribosomal protein S6 phosphorylation (target of mTORC1) in the diabetic heart. To determine the cause and effect relationship of STAT3 in cardioprotection, inducible cardiac-specific STAT3-deficient (MCM TG:STAT3(flox/flox)) and WT mice (MCM TG:STAT3(flox/flox)) were made diabetic by feeding high fat diet (HFD). Rapamycin given at reperfusion reduced IS in WT mice but not in STAT3-deficient mice following I/R. Moreover, cardiomyocytes isolated from HFD-fed WT mice showed resistance against necrosis (trypan blue staining) and apoptosis (TUNEL assay) when treated with rapamycin during reoxygenation following simulated ischemia. Such protection was absent in cardiomyocytes from HFD-fed STAT3-deficient mice. STAT3 signaling plays critical role in reducing IS and attenuates cardiomyocyte death following reperfusion therapy with rapamycin in diabetic heart.


Assuntos
Cardiomiopatias Diabéticas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Western Blotting , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/patologia , Modelos Animais de Doenças , Imunossupressores/farmacologia , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/etiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sirolimo/farmacologia
17.
ASAIO J ; 61(2): 161-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25423120

RESUMO

Myocardial recovery with left ventricular assist device (LVAD) support is uncommon and unpredictable. We tested the hypothesis that injectable particulate extracellular matrix (P-ECM) with LVAD support promotes cell proliferation and improves cardiac function. LVAD, P-ECM, and P-ECM + LVAD therapies were investigated in chronic ischemic heart failure (IHF) calves induced using coronary embolization. Particulate extracellular matrix emulsion (CorMatrix, Roswell, GA) was injected intramyocardially using a 7 needle pneumatic delivery tool. Left ventricular assist devices (HVAD, HeartWare) were implanted in a left ventricle (LV) apex to proximal descending aorta configuration. Cell proliferation was identified using BrdU (5 mg/kg) injections over the last 45 treatment days. Echocardiography was performed weekly. End-organ regional blood flow (RBF) was quantified at study endpoints using fluorescently labeled microspheres. Before treatment, IHF calves had an ejection fraction (EF) of 33 ± 2% and left ventricular end-diastolic volume of 214 ± 18 ml with cardiac cachexia (0.69 ± 0.06 kg/day). Healthy weight gain was restored in all groups (0.89 ± 0.03 kg/day). EF increased with P-ECM + HVAD from 36 ± 5% to 75 ± 2%, HVAD 38 ± 4% to 58 ± 5%, and P-ECM 27 ± 1% to 66 ± 6%. P-ECM + HVAD demonstrated the largest increase in cell proliferation and end-organ RBF. This study demonstrates the feasibility of combined LVAD support with P-ECM injection to stimulate new cell proliferation and improve cardiac function, which warrants further investigation.


Assuntos
Terapia Biológica/métodos , Matriz Extracelular/fisiologia , Insuficiência Cardíaca/cirurgia , Insuficiência Cardíaca/terapia , Coração Auxiliar , Animais , Bovinos , Modelos Animais de Doenças , Emulsões , Estudos de Viabilidade , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Injeções , Miocárdio/patologia , Tamanho da Partícula , Fluxo Sanguíneo Regional , Suínos , Alicerces Teciduais , Função Ventricular Esquerda
18.
Stem Cell Rev Rep ; 11(1): 110-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25086571

RESUMO

Activation of complement cascade (ComC) play and important role in mobilization of hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood (PB). While there are vast experimental data on the mechanisms and factors that induce or promote mobilization of HSPCs, there is relatively less data on negative regulators of this process. We demonstrate for the first time that heme oxygenase-1 (HO-1) that has a well-documented anti-inflammatory potential plays an important and heretofore unrecognized role in retention of HSPCs in BM niches by i) modulating negatively activation of mobilization promoting ComC, ii) maintaining stromal derived factor-1 (SDF-1) level in the BM microenvironment and iii) attenuating chemotactic responsiveness of HSPCs to SDF-1 and sphingosine-1 phosphate (S1P) gradients in PB. Furthermore, our data showing a positive mobilizing effect by a non-toxic small-molecule inhibitor of HO-1 (SnPP) suggest that blockade of HO-1 would be a promising strategy to facilitate mobilization of HSPCs. Further studies are also needed to evaluate better the molecular mechanisms responsible for the potential effect of HO-1 in homing of HSPCs after transplantation.


Assuntos
Movimento Celular , Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Heme Oxigenase-1/metabolismo , Animais , Adesão Celular , Quimiocina CXCL12/metabolismo , Ensaio de Unidades Formadoras de Colônias , Complemento C5b/metabolismo , Complemento C9/metabolismo , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/genética , Contagem de Leucócitos , Lisofosfolipídeos/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Protoporfirinas/farmacologia , Esfingosina/análogos & derivados , Esfingosina/metabolismo
19.
Stem Cells ; 32(9): 2502-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24806427

RESUMO

Activation of the complement cascade (CC) with myocardial infarction (MI) acutely initiates immune cell infiltration, membrane attack complex formation on injured myocytes, and exacerbates myocardial injury. Recent studies implicate the CC in mobilization of stem/progenitor cells and tissue regeneration. Its role in chronic MI is unknown. Here, we consider complement component C3, in the chronic response to MI. C3 knockout (KO) mice were studied after permanent coronary artery ligation. C3 deficiency exacerbated myocardial dysfunction 28 days after MI compared to WT with further impaired systolic function and LV dilation despite similar infarct size 24 hours post-MI. Morphometric analysis 28 days post-MI showed C3 KO mice had more scar tissue with less viable myocardium within the infarct zone which correlated with decreased c-kit(pos) cardiac stem/progenitor cells (CPSC), decreased proliferating Ki67(pos) CSPCs and decreased formation of new BrdU(pos) /α-sarcomeric actin(pos) myocytes, and increased apoptosis compared to WT. Decreased CSPCs and increased apoptosis were evident 7 days post-MI in C3 KO hearts. The inflammatory response with MI was attenuated in the C3 KO and was accompanied by attenuated hematopoietic, pluripotent, and cardiac stem/progenitor cell mobilization into the peripheral blood 72 hours post-MI. These results are the first to demonstrate that CC, through C3, contributes to myocardial preservation and regeneration in response to chronic MI. Responses in the C3 KO infer that C3 activation in response to MI expands the resident CSPC population, increases new myocyte formation, increases and preserves myocardium, inflammatory response, and bone marrow stem/progenitor cell mobilization to preserve myocardial function.


Assuntos
Complemento C3/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Animais , Proliferação de Células/fisiologia , Complemento C3/genética , Modelos Animais de Doenças , Ecocardiografia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Regeneração/fisiologia , Função Ventricular Esquerda/fisiologia
20.
J Biol Chem ; 289(28): 19585-98, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24855642

RESUMO

Hyperinsulinemia contributes to cardiac hypertrophy and heart failure in patients with the metabolic syndrome and type 2 diabetes. Here, high circulating levels of tumor necrosis factor (TNF)-α may synergize with insulin in signaling inflammation and cardiac hypertrophy. We tested whether high insulin affects activation of TNF-α-induced NF-κB and myocardin/serum response factor (SRF) to convey hypertrophy signaling in cardiac myoblasts. In canine cardiac myoblasts, treatment with high insulin (10(-8) to 10(-7) m) for 0-24 h increased insulin receptor substrate (IRS)-1 phosphorylation at Ser-307, decreased protein levels of chaperone-associated ubiquitin (Ub) E3 ligase C terminus of heat shock protein 70-interacting protein (CHIP), increased SRF activity, as well as ß-myosin heavy chain (MHC) and myocardin expressions. Here siRNAs to myocardin or NF-κB, as well as CHIP overexpression prevented (while siRNA-mediated CHIP disruption potentiated) high insulin-induced SR element (SRE) activation and ß-MHC expression. Insulin markedly potentiated TNF-α-induced NF-κB activation. Compared with insulin alone, insulin+TNF-α increased SRF/SRE binding and ß-MHC expression, which was reversed by the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) and by NF-κB silencing. In the hearts of db/db diabetic mice, in which Akt phosphorylation was decreased, p38MAPK, Akt1, and IRS-1 phosphorylation at Ser-307 were increased, together with myocardin expression as well as SRE and NF-κB activities. In response to high insulin, cardiac myoblasts increase the expression or the promyogenic transcription factors myocardin/SRF in a CHIP-dependent manner. Insulin potentiates TNF-α in inducing NF-κB and SRF/SRE activities. In hyperinsulinemic states, myocardin may act as a nuclear effector of insulin, promoting cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Insulina/metabolismo , Mioblastos Cardíacos/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo , Animais , Antineoplásicos/farmacologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/patologia , Células Cultivadas , Cães , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Camundongos , Mioblastos Cardíacos/patologia , NF-kappa B/genética , Proteínas Nucleares/genética , Prolina/análogos & derivados , Prolina/farmacologia , Fator de Resposta Sérica/genética , Tiocarbamatos/farmacologia , Transativadores/genética , Fator de Necrose Tumoral alfa/toxicidade , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA