Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 78: 131-140, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37875210

RESUMO

Microbial Fuel Cells (MFCs) transform organic matter into electricity through microbial electrochemical reactions catalysed on anodic and cathodic half-cells. Terrestrial MFCs (TMFCs) are a bioelectrochemical system for bioelectricity production as well as soil remediation. In TMFCs, the soil is the ion-exchange electrolyte, whereas a biofilm on the anode oxidises organic matter through electroactive bacteria. Little is known of the overall microbial community composition in a TMFC, which impedes complete exploitation of the potential to generate energy in different soil types. In this context, an experiment was performed to reveal the prokaryotic community structure in single chamber TMFCs with soil in the presence and absence of a municipal waste compost (3% w/v). The microbial community was assessed on the anode and cathode and in bulk soil at the end of the experiment (54 days). Moreover, TMFC electrical performance (voltage and power) was also evaluated over the experimental period, varying the external resistance to improve performance. Compost stimulated soil microbial activity, in line with a general increase in voltage and power. Significant differences were observed in the microbial communities between initial soil conditions and TMFCs, and between the anode, cathode and bulk soil in the presence of the compost. Several electroactive genera (Bacillus, Fulvivirga, Burkholdeira and Geobacter) were found at the anode in the presence of compost. Overall, the use of municipal waste compost significantly increased the performance of the MFCs in terms of electrical power and voltage generated, not least thanks to the selective pressure towards electroactive bacteria on the anode.


Assuntos
Fontes de Energia Bioelétrica , Compostagem , Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Bactérias , Eletrodos , Solo
2.
Front Microbiol ; 12: 740118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630365

RESUMO

The anionic surfactant sodium lauryl ether sulfate (SLES) is the main component of most commercial foaming agents (FAs) used in the excavation of highway and railway tunnels with Earth pressure balance-tunnel boring machines (EPB-TBMs). Several hundreds of millions of tons of spoil material, consisting of soil mixed with FAs, are produced worldwide, raising the issue of their handling and safe disposal. Reducing waste production and reusing by-products are the primary objectives of the "circular economy," and in this context, the biodegradation of SLES becomes a key question in reclaiming excavated soils, especially at construction sites where SLES degradation on the spot is not possible because of lack of space for temporary spoil material storage. The aim of the present work was to apply a bacterial consortium (BC) of SLES degraders to spoil material excavated with an EPB-TBM and coming from a real construction site. For this purpose, the BC capability to accelerate SLES degradation was tested. Preliminary BC growth, degradation tests, and ecotoxicological evaluations were performed on a selected FA. Subsequently, a bioaugmentation experiment was conducted; and the microbial abundance, viability, and SLES concentrations in spoil material were evaluated over the experimental time (0.5, 3, 6, 24, 48, and 144 h). Moreover, the corresponding aqueous elutriates were extracted from all the soil samples and analyzed for SLES concentration and ecotoxicological evaluations with the bacterium Aliivibrio fischeri. The preliminary experiments showed the BC capability to grow under 14 different concentrations of the FA. The maximum BC growth rates and degradation efficiency (100%) were achieved with initial SLES concentrations of 125, 250, and 500 mg/L. The subsequent bioaugmentation of the spoil material with BC significantly (sixfold) improved the degradation time of SLES (DT50 1 day) compared with natural attenuation (DT50 6 days). In line with this result, neither SLES residues nor toxicity was recorded in the soil extracts showing the spoil material as a by-product promptly usable. The bioaugmentation with BC can be a very useful for cleaning spoil material produced in underground construction where its temporary storage (for SLES natural biodegradation) is not possible.

3.
Front Microbiol ; 11: 2073, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983051

RESUMO

Due to their widespread use in industrial applications in recent decades, Polychlorobiphenyls (PCBs) and heavy metals (HMs) are the most common soil contaminants worldwide, posing a risk for both ecosystems and human health. In this study, a poplar-assisted bioremediation strategy has been applied for more than 4 years to a historically contaminated area (PCBs and HMs) in Southern Italy using the Monviso poplar clone. This clone was effective in promoting a decrease in all contaminants and an increase in soil quality in terms of organic carbon and microbial abundance. Moreover, a significant shift in the structure and predicted function of the belowground microbial community was also observed when analyzing both DNA and cDNA sequencing data. In fact, an increase in bacterial genera belonging to Proteobacteria able to degrade PCBs and resist HMs was observed. Moreover, the functional profiling of the microbial community predicted by PICRUSt2 made it possible to identify several genes associated with PCB transformation (e.g., bphAa, bphAb, bphB, bphC), response to HM oxidative stress (e.g., catalase, superoxide reductase, peroxidase) and HM uptake and expulsion (e.g., ABC transporters). This work demonstrated the effectiveness of the poplar clone Monviso in stimulating the natural belowground microbial community to remove contaminants and improve the overall soil quality. It is a practical example of a nature based solution involving synergic interactions between plants and the belowground microbial community.

4.
Front Microbiol ; 11: 1542, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733421

RESUMO

The anionic surfactant Sodium Lauryl Ether Sulfate (SLES) is the principal component of several commercial foaming products for soil conditioning in the tunneling industry. Huge amounts of spoil material are produced during the excavation process and the presence of SLES can affect its re-use as a by-product. Anionic surfactants can be a risk for ecosystems if occurring in the environment at toxic concentrations. SLES biodegradability is a key issue if the excavated soil is to be reused. The aim of this study was to identify bacteria able to degrade SLES, so that it could potentially be used in bioaugmentation techniques. Enrichment cultures were performed using bacterial populations from spoil material collected in a tunnel construction site as the inoculum. A bacterial consortium able to grow in a few hours with SLES concentrations from 125 mg/L to 2 g/L was selected and then identified by Next Generation Sequencing analysis. Most of bacteria identified belonged to Gamma-Proteobacteria (99%) and Pseudomonas (ca 90%) was the predominant genus. The bacterial consortium was able to degrade 94% of an initial SLES concentration of 250 mg/L in 9 h. A predictive functional analysis using the PICRUSt2 software showed the presence of esterase enzymes, responsible for SLES degradation. The bacterial consortium selected could be useful for its possible seeding (bioaugmentation) on spoil material from tunneling excavation.

5.
Environ Sci Pollut Res Int ; 27(25): 30987-30997, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32314285

RESUMO

There is a growing concern about the simultaneous presence in the environment of different kinds of pollutants, because of the possible synergic or additive effects of chemical mixtures on ecosystems. Chlorpyrifos (CPF) is an organophosphate insecticide extensively used in agricultural practices. The anionic surfactant sodium lauryl ether sulphate (SLES) is the main component of several commercial products, including foaming agents used in underground mechanised excavation. Both compounds are produced and sold in high amounts worldwide and can be found in the environment as soil contaminants. The persistence of SLES and CPF in agricultural soils and their possible effects on the natural microbial community was evaluated in microcosms. The experimental set consisted of soil samples containing the autochthonous microbial community and treated with only SLES (70 mg/kg), only CPF (2 mg/kg) or with a mix of both compounds. Control microcosms (without the contaminants) were also performed. Soil samples were collected over the experimental period (0, 7, 14, 21 and 28 days) and analysed for CPF, SLES and the main metabolite of CPF (3, 5, 6-trichloropyridinol, TCP). The half-life time (DT50) of each parent compound was estimated in all experimental conditions. At the same time, the abundance, activity and structure of the microbial community were also evaluated. The results showed that the co-presence of SLES and CPF did not substantially affect their persistence in soil (DT50 of 11 and 9 days with co-presence and 13 and 10 days, respectively, when alone); however, in the presence of SLES, a higher amount of the metabolite TCP was found. Interestingly, some differences were found in the bacterial community structure, abundance and activity among the various conditions.


Assuntos
Clorpirifos , Inseticidas/análise , Microbiota , Praguicidas , Éter , Éteres , Sódio , Solo , Sulfatos , Tensoativos
6.
Sci Total Environ ; 717: 137210, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062235

RESUMO

The risks of pollution by polycyclic aromatic hydrocarbons (PAHs) may increase in bioremediated soils as a result of the formation of toxic byproducts and the mobilization of pollutants associated to suspended colloids. In this study, we used the motile and chemotactic bacterium Pseudomonas putida G7 as an experimental model for examining the potential role of bacterial motility in the cometabolism and biosorption of pyrene in a porous medium. For this purpose, we conducted batch and column transport experiments with 14C-labelled pyrene loaded on silicone O-rings, which acted as a passive dosing system. In the batch experiments, we observed concentrations of the 14C-pyrene equivalents well above the equilibrium concentration observed in abiotic controls. This mobilization was attributed to biosorption and cometabolism processes occurring in parallel. HPLC quantification revealed pyrene concentrations well below the 14C-based quantifications by liquid scintillation, indicating pyrene transformation into water-soluble polar metabolites. The results from transport experiments in sand columns revealed that cometabolic-active, motile cells were capable of accessing a distant source of sorbed pyrene. Using the same experimental system, we also determined that salicylate-mobilized cells, inhibited for pyrene cometabolism, but mobilized due to their tactic behavior, were able to sorb the compound and mobilize it by biosorption. Our results indicate that motile bacteria active in bioremediation may contribute, through cometabolism and biosorption, to the risk associated to pollutant mobilization in soils. This research could be the starting point for the development of more efficient, low-risk bioremediation strategies of poorly bioavailable contaminants in soils.


Assuntos
Bactérias , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Porosidade , Pirenos , Poluentes do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA