Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Leuk Lymphoma ; 64(12): 1893-1904, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37552126

RESUMO

Cyclin-dependent kinases (CDK) regulate cell cycle and transcriptional activity. Pan-CDK inhibitors demonstrated early efficacy in lymphoid malignancies, but also have been associated with narrow therapeutic index. Among transcriptional CDKs, CDK7 and CDK9 emerged as promising targets. CDK9 serves as a component of P-TEFb elongation complex and thus is indispensable in mRNA transcription. Selective CDK9 inhibitors demonstrated pre-clinical efficacy in in vitro and in vivo models of B-cell non-Hodgkin lymphoma. CDK9 inhibition results in transcriptional pausing with rapid downmodulation of short-lived oncogenic proteins, e.g. Myc and Mcl-1, followed by cell apoptosis. Early phase clinical trials established safety of CDK9 inhibitors, with manageable neutropenia, infections and gastrointestinal toxicities. In this review, we summarize the rationale of targeting CDK9 in lymphoid malignancies, as well as pre-clinical and early clinical data with pan-CDK and selective CDK9 inhibitors.


Assuntos
Quinases Ciclina-Dependentes , Neoplasias , Humanos , Quinases Ciclina-Dependentes/genética , Fosforilação , Transcrição Gênica , Pontos de Checagem do Ciclo Celular
2.
Mol Cancer Ther ; 22(9): 1040-1051, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37420267

RESUMO

Novel targeted agents used in therapy of lymphoid malignancies are recognized to have complex immune-mediated effects. Sumoylation, a posttranslational modification of target proteins by small ubiquitin-like modifiers (SUMO), regulates a variety of cellular processes indispensable in immune cell activation. Despite this, the role of sumoylation in T-cell biology in context of cancer is not known. TAK-981 (subasumstat) is a small-molecule inhibitor of the SUMO-activating enzyme (SAE) that forms a covalent adduct with an activated SUMO protein. Using T cells derived from patients with chronic lymphocytic leukemia (CLL), we demonstrate that targeting SAE activates type I IFN response. This is accompanied by largely intact T-cell activation in response to T-cell receptor engagement, with increased expression of CD69 and CD38. Furthermore, TAK-981 decreases regulatory T cell (Treg) differentiation and enhances secretion of IFNγ by CD4+ and CD8+ T cells. These findings were recapitulated in mouse models, suggesting an evolutionarily conserved mechanism of T-cell activation regulated by SUMO modification. Relevant to the consideration of TAK-981 as an effective agent for immunotherapy in hematologic malignancies, we demonstrate that the downstream impact of TAK-981 administration is enhancement of the cytotoxic function of CD8+ T cells, thus uncovering immune implications of targeting sumoylation in lymphoid neoplasia.


Assuntos
Leucemia Linfocítica Crônica de Células B , Ubiquitina , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Processamento de Proteína Pós-Traducional , Inibidores Enzimáticos , Sumoilação
3.
Leukemia ; 37(6): 1324-1335, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37031300

RESUMO

Neddylation is a sequential enzyme-based process which regulates the function of E3 Cullin-RING ligase (CRL) and thus degradation of substrate proteins. Here we show that CD8+ T cells are a direct target for therapeutically relevant anti-lymphoma activity of pevonedistat, a Nedd8-activating enzyme (NAE) inhibitor. Pevonedistat-treated patient-derived CD8+ T cells upregulated TNFα and IFNγ and exhibited enhanced cytotoxicity. Pevonedistat induced CD8+ T-cell inflamed microenvironment and delayed tumor progression in A20 syngeneic lymphoma model. This anti-tumor effect lessened when CD8+ T cells lost the ability to engage tumors through MHC class I interactions, achieved either through CD8+ T-cell depletion or genetic knockout of B2M. Meanwhile, loss of UBE2M in tumor did not alter efficacy of pevonedistat. Concurrent blockade of NAE and PD-1 led to enhanced tumor immune infiltration, T-cell activation and chemokine expression and synergistically restricted tumor growth. shRNA-mediated knockdown of HIF-1α, a CRL substrate, abrogated the in vitro effects of pevonedistat, suggesting that NAE inhibition modulates T-cell function in HIF-1α-dependent manner. scRNA-Seq-based clinical analyses in lymphoma patients receiving pevonedistat therapy demonstrated upregulation of interferon response signatures in immune cells. Thus, targeting NAE enhances the inflammatory T-cell state, providing rationale for checkpoint blockade-based combination therapy.


Assuntos
Antineoplásicos , Linfoma , Humanos , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Linfoma/tratamento farmacológico , Ciclopentanos/farmacologia , Ciclopentanos/uso terapêutico , Proteína NEDD8 , Microambiente Tumoral , Enzimas de Conjugação de Ubiquitina
4.
Mol Cancer ; 22(1): 64, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36998071

RESUMO

Diffuse large B-cell lymphoma (DLBCL) exhibits significant genetic heterogeneity which contributes to drug resistance, necessitating development of novel therapeutic approaches. Pharmacological inhibitors of cyclin-dependent kinases (CDK) demonstrated pre-clinical activity in DLBCL, however many stalled in clinical development. Here we show that AZD4573, a selective inhibitor of CDK9, restricted growth of DLBCL cells. CDK9 inhibition (CDK9i) resulted in rapid changes in the transcriptome and proteome, with downmodulation of multiple oncoproteins (eg, MYC, Mcl-1, JunB, PIM3) and deregulation of phosphoinotiside-3 kinase (PI3K) and senescence pathways. Following initial transcriptional repression due to RNAPII pausing, we observed transcriptional recovery of several oncogenes, including MYC and PIM3. ATAC-Seq and ChIP-Seq experiments revealed that CDK9i induced epigenetic remodeling with bi-directional changes in chromatin accessibility, suppressed promoter activation and led to sustained reprograming of the super-enhancer landscape. A CRISPR library screen suggested that SE-associated genes in the Mediator complex, as well as AKT1, confer resistance to CDK9i. Consistent with this, sgRNA-mediated knockout of MED12 sensitized cells to CDK9i. Informed by our mechanistic findings, we combined AZD4573 with either PIM kinase or PI3K inhibitors. Both combinations decreased proliferation and induced apoptosis in DLBCL and primary lymphoma cells in vitro as well as resulted in delayed tumor progression and extended survival of mice xenografted with DLBCL in vivo. Thus, CDK9i induces reprogramming of the epigenetic landscape, and super-enhancer driven recovery of select oncogenes may contribute to resistance to CDK9i. PIM and PI3K represent potential targets to circumvent resistance to CDK9i in the heterogeneous landscape of DLBCL.


Assuntos
Quinase 9 Dependente de Ciclina , Epigênese Genética , Linfoma Difuso de Grandes Células B , Animais , Camundongos , Apoptose , Linhagem Celular Tumoral , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição/genética , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos
5.
Cell Death Dis ; 13(3): 246, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296646

RESUMO

Aberrant B-cell receptor (BCR) signaling is a key driver in lymphoid malignancies. Bruton tyrosine kinase (BTK) inhibitors that disrupt BCR signaling have received regulatory approvals in therapy of mantle cell lymphoma (MCL). However, responses are incomplete and patients who experience BTK inhibitor therapy failure have dire outcomes. CG-806 (luxeptinib) is a dual BTK/SYK inhibitor in clinical development in hematologic malignancies. Here we investigated the pre-clinical activity of CG-806 in MCL. In vitro treatment with CG-806 thwarted survival of MCL cell lines and patient-derived MCL cells in a dose-dependent manner. CG-806 blocked BTK and SYK activation and abrogated BCR signaling. Contrary to ibrutinib, CG-806 downmodulated the anti-apoptotic proteins Mcl-1 and Bcl-xL, abrogated survival of ibrutinib-resistant MCL cell lines, and partially reversed the pro-survival effects of stromal microenvironment-mimicking conditions in primary MCL cells. Dual BTK/SYK inhibition led to mitochondrial membrane depolarization accompanied by mitophagy and metabolic reprogramming toward glycolysis. In vivo studies of CG-806 demonstrated improved survival in one of the two tested aggressive MCL PDX models. While suppression of the anti-apoptotic Bcl-2 family proteins and NFκB signaling correlated with in vivo drug sensitivity, OxPhos and MYC transcriptional programs were upregulated in the resistant model following treatment with CG-806. BAX and NFKBIA were implicated in susceptibility to CG-806 in a whole-genome CRISPR-Cas9 library screen (in a diffuse large B-cell lymphoma cell line). A high-throughput in vitro functional drug screen demonstrated synergy between CG-806 and Bcl-2 inhibitors. In sum, dual BTK/SYK inhibitor CG-806 disrupts BCR signaling and induces metabolic reprogramming and apoptosis in MCL. The Bcl-2 network is a key mediator of sensitivity to CG-806 and combined targeting of Bcl-2 demonstrates synergy with CG-806 warranting continued exploration in lymphoid malignancies.


Assuntos
Linfoma de Célula do Manto , Adulto , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Receptores de Antígenos de Linfócitos B/metabolismo , Quinase Syk , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA