Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(11): 16150-16163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38319419

RESUMO

Understanding anaerobic biodegradation of ether oxygenates beyond MTBE in groundwater is important, given that it is replaced by ETBE as a gasoline additive in several regions. The lack of studies demonstrating anaerobic biodegradation of ETBE, and its product TBA, reflects the relative resistance of ethers and alcohols with a tertiary carbon atom to enzymatic attack under anoxic conditions. Anaerobic ETBE- or TBA-degrading microorganisms have not been characterized. Only one field study suggested anaerobic ETBE biodegradation. Anaerobic (co)metabolism of ETBE or TBA was reported in anoxic microcosms, indicating their biodegradation potential in anoxic groundwater systems. Non-isotopic methods, such as the detection of contaminant loss, metabolites, or ETBE- and TBA-degrading bacteria are not sufficiently sensitive to track anaerobic biodegradation in situ. Compound- and position-specific stable isotope analysis provides a means to study MTBE biodegradation, but isotopic fractionation of ETBE has only been studied with a few aerobic bacteria (εC -0.7 to -1.7‰, εH -11 to -73‰) and at one anoxic field site (δ2H-ETBE +14‰). Similarly, stable carbon isotope enrichment (δ13C-TBA +6.5‰) indicated TBA biodegradation at an anoxic field site. CSIA and PSIA are promising methods to detect anaerobic ETBE and TBA biodegradation but need to be investigated further to assess their full potential at field scale.


Assuntos
Etil-Éteres , Água Subterrânea , Éteres Metílicos , terc-Butil Álcool , Anaerobiose , Biodegradação Ambiental , Isótopos de Carbono/análise , Carbono
2.
Langmuir ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319653

RESUMO

Avoiding microbial contamination and biofilm formation on the surfaces of aircraft fuel tanks is a major challenge in the aviation industry. The inevitable presence of water in fuel systems and nutrients provided by the fuel makes an ideal environment for bacteria, fungi, and yeast to grow. Understanding how microbes grow on different fuel tank materials is the first step to control biofilm formation in aviation fuel systems. In this study, biofilms of Pseudomonas putida, a model Gram-negative bacterium previously found in aircraft fuel tanks, were characterized on aluminum 7075-T6 surfaces, which is an alloy used by the aviation industry due to favorable properties including high strength and fatigue resistance. Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDX) showed that extracellular polymeric substances (EPS) produced by P. putida were important components of biofilms with a likely role in biofilm stability and adhesion to the surfaces. EDX analysis showed that the proportion of phosphorus with respect to nitrogen is higher in the EPS than in the bacterial cells. Additionally, different morphologies in biofilm formation were observed in the fuel phase compared to the water phase. Micro-Fourier transform infrared spectroscopy (micro-FTIR) analysis suggested that phosphoryl and carboxyl functional groups are fundamental for the irreversible attachment between the EPS of bacteria and the aluminum surface, by the formation of hydrogen bonds and inner-sphere complexes between the macromolecules and the aluminum surface. Based on the hypothesis that nucleic acids (particularly DNA) are an important component of EPS in P. putida biofilms, the impact of degrading extracellular DNA was tested. Treatment with the enzyme DNase I affected both water and fuel phase biofilms─with the cell structure disrupted in the aqueous phase, but cells remained attached to the aluminum coupons.

3.
Environ Sci Pollut Res Int ; 29(1): 1223-1238, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34350568

RESUMO

Microbes in aquifers are present suspended in groundwater or attached to the aquifer sediment. Groundwater is often sampled at gasoline ether oxygenate (GEO)-impacted sites to assess the potential biodegradation of organic constituents. However, the distribution of GEO-degrading microorganisms between the groundwater and aquifer sediment must be understood to interpret this potential. In this study, the distribution of ethyl tert-butyl ether (ETBE)-degrading organisms and ETBE biodegradation potential was investigated in laboratory microcosm studies and mixed groundwater-aquifer sediment samples obtained from pumped monitoring wells at ETBE-impacted sites. ETBE biodegradation potential (as determined by quantification of the ethB gene) was detected predominantly in the attached microbial communities and was below detection limit in the groundwater communities. The copy number of ethB genes varied with borehole purge volume at the field sites. Members of the Comamonadaceae and Gammaproteobacteria families were identified as responders for ETBE biodegradation. However, the detection of the ethB gene is a more appropriate function-based indicator of ETBE biodegradation potential than taxonomic analysis of the microbial community. The study shows that a mixed groundwater-aquifer sediment (slurry) sample collected from monitoring wells after minimal purging can be used to assess the aquifer ETBE biodegradation potential at ETBE-release sites using this function-based concept.


Assuntos
Éter , Água Subterrânea , Biodegradação Ambiental , Etil-Éteres , Humanos
4.
Langmuir ; 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34347486

RESUMO

Attachment assays of a Pseudomonas isolate to fused silica slides showed that treatment with DNaseI significantly inhibited cellular adsorption, which was restored upon DNA treatment. These assays confirmed the important role of extracellular DNA (eDNA) adsorption to a surface. To investigate the eDNA adsorption mechanism, single-molecule force spectroscopy (SMFS) was used to measure the adsorption of eDNA to silicon surfaces in the presence of different concentrations of sodium and calcium ions. SMFS reveals that the work of adhesion required to remove calcium-bound eDNA from the silicon oxide surface is substantially greater than that for sodium. Molecular dynamics simulations were also performed, and here, it was shown that the energy gain in eDNA adsorption to a silicon oxide surface in the presence of calcium ions is small and much less than that in the presence of sodium. The simulations show that the length scales involved in eDNA adsorption are less in the presence of sodium ions than those in the presence of calcium. In the presence of calcium, eDNA is pushed above the surface cations, whereas in the presence of sodium ions, short-range interactions with the surface dominate. Moreover, SMFS data show that increasing [Ca2+] from 1 to 10 mM increases the adsorption of the cations to the silicon oxide surface and consequently enhances the Stern layer, which in turn increases the length scale associated with eDNA adsorption.

5.
Environ Pollut ; 277: 116765, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647805

RESUMO

Biodegradation is responsible for most contaminant removal in plumes of organic compounds and is fastest at the plume fringe where microbial cell numbers and activity are highest. As the plume migrates from the source, groundwater containing the contaminants and planktonic microbial community encounters uncontaminated substrata on which an attached community subsequently develops. While attached microbial communities are important for biodegradation, the time needed for their establishment, their relationship with the planktonic community and the processes controlling their development are not well understood. We compare the dynamics of development of attached microbial communities on sterile substrata in the field and laboratory microcosms, sampled simultaneously at intervals over two years. We show that attached microbial cell numbers increased rapidly and stabilised after similar periods of incubation (∼100 days) in both field and microcosm experiments. These timescales were similar even though variation in the contaminant source evident in the field was absent in microcosm studies, implying that this period was an emergent property of the attached microbial community. 16S rRNA gene sequencing showed that attached and planktonic communities differed markedly, with many attached organisms strongly preferring attachment. Successional processes were evident, both in community diversity indices and from community network analysis. Community development was governed by both deterministic and stochastic processes and was related to the predilection of community members for different lifestyles and the geochemical environment.


Assuntos
Água Subterrânea , Microbiota , Poluentes Químicos da Água , Biodegradação Ambiental , Plâncton , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise
6.
Pest Manag Sci ; 77(9): 3900-3909, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33729685

RESUMO

Since the discovery that the plant immune system could be augmented for improved deployment against biotic stressors through the exogenous application of chemicals that lead to induced resistance (IR), many such IR-eliciting agents have been identified. Initially it was hoped that these chemical IR agents would be a benign alternative to traditional chemical biocides. However, owing to low efficacy and/or a realization that their benefits sometimes come at the cost of growth and yield penalties, chemical IR agents fell out of favour and were seldom used as crop protection products. Despite the lack of interest in agricultural use, researchers have continued to explore the efficacy and mechanisms of chemical IR. Moreover, as we move away from the approach of 'zero tolerance' toward plant pests and pathogens toward integrated pest management, chemical IR agents could have a place in the plant protection product list. In this review, we chart the rise and fall of chemical IR agents, and then explore a variety of strategies used to improve their efficacy and remediate their negative adverse effects. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Proteção de Cultivos , Controle de Pragas , Agricultura , Plantas
7.
Mycorrhiza ; 31(1): 69-83, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33200348

RESUMO

Many plant species form symbioses with ectomycorrhizal fungi, which help them forage for limiting nutrients in the soil such as inorganic phosphate (Pi). The transcriptional responses to symbiosis and nutrient-limiting conditions in ectomycorrhizal fungal hyphae, however, are largely unknown. An artificial system was developed to study ectomycorrhizal basidiomycete Paxillus involutus growth in symbiosis with its host tree Pinus sylvestris at different Pi concentrations. RNA-seq analysis was performed on P. involutus hyphae growing under Pi-limiting conditions, either in symbiosis or alone. We show that Pi starvation and ectomycorrhizal symbiosis have an independent effect on the P. involutus transcriptome. Notably, low Pi availability induces expression of newly identified putative high-affinity Pi transporter genes, while reducing the expression of putative organic acid transporters. Additionally, low Pi availability induces a close transcriptional interplay between P and N metabolism. GTP-related signalling was found to have a positive effect in the maintenance of ectomycorrhizal symbiosis, whereas multiple putative cytochrome P450 genes were found to be downregulated, unlike arbuscular mycorrhizal fungi. We provide the first evidence of global transcriptional changes induced by low Pi availability and ectomycorrhizal symbiosis in the hyphae of P. involutus, revealing both similarities and differences with better-characterized arbuscular mycorrhizal fungi.


Assuntos
Micorrizas , Pinus sylvestris , Pinus , Basidiomycota , Micorrizas/genética , Fosfatos , Pinus sylvestris/genética , Simbiose , Transcriptoma
8.
Heliyon ; 6(11): e05388, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33241138

RESUMO

Plant based biochars are proposed as soil amendments to immobilize potentially toxic trace elements (PTEs), such as Cd(II), Pb(II) and Zn(II) and aid in soil restoration. However, the sorption capacity of biochar for these elements can vary widely depending on biochar nature and metal properties. Currently, there is no clear methodology to pre-screen biochars for their suitability as adsorbents for these elements. Therefore, to facilitate biochar selection for application in soil restoration, this study explored the relationships between the physico-chemical properties of five plant-based biochars and their capacity to immobilize Cd(II), Pb(II) and Zn(II). Batch experiments using synthetic soil pore water were used to assess the sorption of these elements. The sorption isotherms described by the Hill model indicated that PTE sorption capacity followed the order Pb(II) > Cd(II) >Zn(II) regardless of biochar type in mono-element systems. Preferential sorption of Pb(II) limited the immobilization of Cd(II) and Zn(II) in multi-element systems. ATR-FTIR and SEM-EDX spectroscopy studies indicated that Cd(II) and Pb(II) sorption was mediated by complexation with carboxylic groups, cation-π interactions and precipitation with phosphates and silicates, while Zn(II) sorption occurred mainly by complexation with phenolic groups and precipitation with phosphates. A high correlation (>0.8) between Electrical Conductivity, Cation Exchange Capacity, pH and sorption capacity was identified for all metals tested, highlighting the electrostatic nature of the sorption mechanisms involved. Biochars derived from herbaceous feedstock were better candidates for remediation of soil polluted with Cd(II), Pb(II) and Zn(II), rather than wood-derived biochar. Overall, this study provides evidence of the direct relationship between specific properties of plant-based biochars (pH and EC) and their suitability as adsorbents for some PTEs in soil systems.

9.
Curr Opin Microbiol ; 49: 73-82, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31731229

RESUMO

Plants employ immunological and ecological strategies to resist biotic stress. Recent evidence suggests that plants adapt to biotic stress by changing their root exudation chemistry to assemble health-promoting microbiomes. This so-called 'cry-for-help' hypothesis provides a mechanistic explanation for previously characterized soil feedback responses to plant disease, such as the development of disease-suppressing soils upon successive cultivations of take all-infected wheat. Here, we divide the hypothesis into individual stages and evaluate the evidence for each component. We review how plant immune responses modify root exudation chemistry, as well as what impact this has on microbial activities, and the subsequent plant responses to these activities. Finally, we review the ecological relevance of the interaction, along with its translational potential for future crop protection strategies.


Assuntos
Microbiota , Doenças das Plantas/microbiologia , Exsudatos de Plantas/química , Raízes de Plantas/microbiologia , Microbiologia do Solo , Estresse Fisiológico , Doenças das Plantas/imunologia , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/química , Raízes de Plantas/imunologia , Plantas/química , Plantas/imunologia , Plantas/microbiologia , Rizosfera , Metabolismo Secundário
10.
PLoS One ; 14(7): e0219479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31335897

RESUMO

From an environmental perspective optimised dairy systems, which follow current regulations, still have low nitrogen (N) use efficiency, high N surplus (kg N ha-1) and enable ad-hoc delivery of direct and indirect reactive N losses to water and the atmosphere. The objective of the present study was to divide an intensive dairy farm into N attenuation capacity areas based on this ad-hoc delivery. Historical and current spatial and temporal multi-level datasets (stable isotope and dissolved gas) were combined and interpreted. Results showed that the farm had four distinct attenuation areas: high N attenuation: characterised by ammonium-N (NH4+-N) below 0.23 mg NH4+-N l-1 and nitrate (NO3--N) below 5.65 mg NO3--N l-1 in surface, drainage and groundwater, located on imperfectly to moderately-well drained soils with high denitrification potential and low nitrous oxide (N2O) emissions (av. 0.0032 mg N2O-N l-1); moderate N attenuation: characterised by low NO3--N concentration in drainage water but high N2O production (0.0317 mg N2O-N l-1) and denitrification potential lower than group 1 (av. δ15N-NO3-: 16.4‰, av. δ18O-NO3-: 9.2‰), on well to moderately drained soils; low N attenuation-area 1: characterised by high NO3--N (av. 6.90 mg NO3--N l-1) in drainage water from well to moderately-well drained soils, with low denitrification potential (av. δ15N-NO3-: 9.5‰, av. δ18O-NO3-: 5.9‰) and high N2O emissions (0.0319 mg N2O l-1); and low N attenuation-area 2: characterised by high NH4+-N (av. 3.93 mg NH4+-N l-1 and high N2O emissions (av. 0.0521 mg N2O l-1) from well to imperfectly drained soil. N loads on site should be moved away from low attenuation areas and emissions to air and water should be assessed.


Assuntos
Indústria de Laticínios , Nitrogênio/análise , Gerenciamento de Resíduos , Agricultura , Compostos de Amônio/análise , Geografia , Óxido Nitroso/análise , Isótopos de Oxigênio/análise , Radioisótopos de Oxigênio/análise , Solo , Fatores de Tempo , Água/química
11.
Plant Methods ; 15: 49, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139239

RESUMO

BACKGROUND: Plant roots are complex, three-dimensional structures that play a central role in anchorage, water and nutrient acquisition, storage and interaction with rhizosphere microbes. Studying the development of the plant root system architecture is inherently difficult as soil is not a transparent medium. RESULTS: This study uses electrical impedance tomography (EIT) to visualise oilseed rape root development in horticultural compost. The development of healthy, control plants and those infected with the gall-forming pathogen, Plasmodiophora brassicae-the causative agent of clubroot disease-were compared. EIT measurements were used to quantify the development of the root system and distinguish between control and infected plants at the onset of gall formation, approximately 20 days after inoculation. Although clear and stark differences between healthy and infected plants were obtained by careful (and hence laborious) packing of the growth medium in layers within the pots; clubroot identification is still possible without a laborious vessel filling protocol. CONCLUSIONS: These results demonstrate the utility of EIT as a low-cost, non-invasive, non-destructive method for characterising root system architecture and plant-pathogen interactions in opaque growth media. As such it offers advantages over other root characterisation techniques and has the potential to act as a low-cost tool for plant phenotyping.

12.
ISME J ; 13(7): 1647-1658, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30796337

RESUMO

The rhizobiome is an important regulator of plant growth and health. Plants shape their rhizobiome communities through production and release of primary and secondary root metabolites. Benzoxazinoids (BXs) are common tryptophan-derived secondary metabolites in grasses that regulate belowground and aboveground biotic interactions. In addition to their biocidal activity, BXs can regulate plant-biotic interactions as semiochemicals or within-plant defence signals. However, the full extent and mechanisms by which BXs shape the root-associated microbiome has remained largely unexplored. Here, we have taken a global approach to examine the regulatory activity of BXs on the maize root metabolome and associated bacterial and fungal communities. Using untargeted mass spectrometry analysis in combination with prokaryotic and fungal amplicon sequencing, we compared the impacts of three genetic mutations in different steps in the BX pathway. We show that BXs regulate global root metabolism and concurrently influence the rhizobiome in a root type-dependent manner. Correlation analysis between BX-controlled root metabolites and bacterial taxa suggested a dominant role for BX-dependent metabolites, particularly flavonoids, in constraining a range of soil microbial taxa, while stimulating methylophilic bacteria. Our study supports a multilateral model by which BXs control root-microbe interactions via a global regulatory function in root secondary metabolism.


Assuntos
Bactérias/efeitos dos fármacos , Benzoxazinas/farmacologia , Fungos/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Raízes de Plantas/metabolismo , Zea mays/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Benzoxazinas/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Poaceae/metabolismo , Metabolismo Secundário , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
13.
Plant J ; 92(1): 147-162, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28742258

RESUMO

Rhizosphere chemistry is the sum of root exudation chemicals, their breakdown products and the microbial products of soil-derived chemicals. To date, most studies about root exudation chemistry are based on sterile cultivation systems, which limits the discovery of microbial breakdown products that act as semiochemicals and shape microbial rhizosphere communities. Here, we present a method for untargeted metabolic profiling of non-sterile rhizosphere soil. We have developed an experimental growth system that enables the collection and analysis of rhizosphere chemicals from different plant species. High-throughput sequencing of 16SrRNA genes demonstrated that plants in the growth system support a microbial rhizosphere effect. To collect a range of (a)polar chemicals from the system, we developed extraction methods that do not cause detectable damage to root cells or soil-inhabiting microbes, thus preventing contamination with cellular metabolites. Untargeted metabolite profiling by UPLC-Q-TOF mass spectrometry, followed by uni- and multivariate statistical analyses, identified a wide range of secondary metabolites that are enriched in plant-containing soil, compared with control soil without roots. We show that the method is suitable for profiling the rhizosphere chemistry of Zea mays (maize) in agricultural soil, thereby demonstrating the applicability to different plant-soil combinations. Our study provides a robust method for the comprehensive metabolite profiling of non-sterile rhizosphere soil, which represents a technical advance towards the establishment of causal relationships between the chemistry and microbial composition of the rhizosphere.


Assuntos
Arabidopsis/metabolismo , Metabolômica/métodos , Microbiota , Exsudatos de Plantas/análise , Zea mays/metabolismo , Arabidopsis/química , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Rizosfera , Solo/química , Zea mays/química
14.
BMC Genomics ; 17: 272, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27036196

RESUMO

BACKGROUND: The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years. RESULTS: To provide insight into the biology of the pathogen and its interaction with its primary host B. napus, we produced a draft genome of P. brassicae pathotypes 3 and 6 (Pb3 and Pb6) that differ in their host range. Pb3 is highly virulent on B. napus (but also infects other Brassica species) while Pb6 infects only vegetable Brassica crops. Both the Pb3 and Pb6 genomes are highly compact, each with a total size of 24.2 Mb, and contain less than 2 % repetitive DNA. Clustering of genome-wide single nucleotide polymorphisms (SNP) of Pb3, Pb6 and three additional re-sequenced pathotypes (Pb2, Pb5 and Pb8) shows a high degree of correlation of cluster grouping with host range. The Pb3 genome features significant reduction of intergenic space with multiple examples of overlapping untranslated regions (UTRs). Dependency on the host for essential nutrients is evident from the loss of genes for the biosynthesis of thiamine and some amino acids and the presence of a wide range of transport proteins, including some unique to P. brassicae. The annotated genes of Pb3 include those with a potential role in the regulation of the plant growth hormones cytokinin and auxin. The expression profile of Pb3 genes, including putative effectors, during infection and their potential role in manipulation of host defence is discussed. CONCLUSION: The P. brassicae genome sequence reveals a compact genome, a dependency of the pathogen on its host for some essential nutrients and a potential role in the regulation of host plant cytokinin and auxin. Genome annotation supported by RNA sequencing reveals significant reduction in intergenic space which, in addition to low repeat content, has likely contributed to the P. brassicae compact genome.


Assuntos
Brassica/parasitologia , Genoma de Protozoário , Interações Hospedeiro-Parasita/genética , Plasmodioforídeos/genética , Arabidopsis , Produtos Agrícolas/parasitologia , Citocininas/metabolismo , DNA de Protozoário/genética , Especificidade de Hospedeiro , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/parasitologia , Análise de Sequência de RNA , Transcriptoma
15.
Plant Physiol ; 170(3): 1655-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26813793

RESUMO

Leaves are derived from heterotrophic meristem tissue that, at some point, must make the transition to autotrophy via the initiation of photosynthesis. However, the timing and spatial coordination of the molecular and cellular processes underpinning this switch are poorly characterized. Here, we report on the identification of a specific stage in rice (Oryza sativa) leaf development (P3/P4 transition) when photosynthetic competence is first established. Using a combined physiological and molecular approach, we show that elements of stomatal and vascular differentiation are coordinated with the onset of measurable light absorption for photosynthesis. Moreover, by exploring the response of the system to environmental perturbation, we show that the earliest stages of rice leaf development have significant plasticity with respect to elements of cellular differentiation of relevance for mature leaf photosynthetic performance. Finally, by performing an RNA sequencing analysis targeted at the early stages of rice leaf development, we uncover a palette of genes whose expression likely underpins the acquisition of photosynthetic capability. Our results identify the P3/P4 transition as a highly dynamic stage in rice leaf development when several processes for the initiation of photosynthetic competence are coordinated. As well as identifying gene targets for future manipulation of rice leaf structure/function, our data highlight a developmental window during which such manipulations are likely to be most effective.


Assuntos
Clorofila/metabolismo , Perfilação da Expressão Gênica/métodos , Oryza/genética , Fotossíntese/genética , Folhas de Planta/genética , Clorofila/química , Fluorescência , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Luz , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fotossíntese/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Estômatos de Plantas/ultraestrutura , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Plastídeos/ultraestrutura , Fatores de Tempo
16.
Bioresour Technol ; 200: 426-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26512868

RESUMO

This is the first study demonstrating the biodegradation of phenolic compounds and their organic metabolites in contaminated groundwater using bioelectrochemical systems (BESs). The phenols were biodegraded anaerobically via 4-hydroxybenzoic acid and 4-hydroxy-3-methylbenzoic acid, which were retained by electromigration in the anode chamber. Oxygen, nitrate, iron(III), sulfate and the electrode were electron acceptors for biodegradation. Electro-active bacteria attached to the anode, producing electricity (~1.8mW/m(2)), while utilizing acetate as an electron donor. Electricity generation started concurrently with iron reduction; the anode was an electron acceptor as thermodynamically favorable as iron(III). Acetate removal was enhanced by 40% in the presence of the anode. However, enhanced removal of phenols occurred only for a short time. Field-scale application of BESs for in situ bioremediation requires an understanding of the regulation and kinetics of biodegradation pathways of the parent compounds to relevant metabolites, and the syntrophic interactions and carbon flow in the microbial community.


Assuntos
Biodegradação Ambiental , Fontes de Energia Bioelétrica , Água Subterrânea , Fenóis/química , Purificação da Água/métodos , Acetatos/química , Bactérias/metabolismo , Benzoatos/química , Eletricidade , Eletrodos , Elétrons , Desenho de Equipamento , Fermentação , Compostos Férricos/química , Ferro/química , Microscopia Eletrônica de Varredura , Nitratos/química , Parabenos/química , Sulfatos/química , Temperatura
17.
Microb Ecol ; 66(1): 84-95, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640275

RESUMO

Polluted aquifers contain indigenous microbial communities with the potential for in situ bioremediation. However, the effect of hydrogeochemical gradients on in situ microbial communities (especially at the plume fringe, where natural attenuation is higher) is still not clear. In this study, we used culture-independent techniques to investigate the diversity of in situ planktonic and attached bacterial communities in a phenol-contaminated sandstone aquifer. Within the upper and lower plume fringes, denaturing gradient gel electrophoresis profiles indicated that planktonic community structure was influenced by the steep hydrogeochemical gradient of the plume rather than the spatial location in the aquifer. Under the same hydrogeochemical conditions (in the lower plume fringe, 30 m below ground level), 16S rRNA gene cloning and sequencing showed that planktonic and attached bacterial communities differed markedly and that the attached community was more diverse. The 16S rRNA gene phylogeny also suggested that a phylogenetically diverse bacterial community operated at this depth (30 mbgl), with biodegradation of phenolic compounds by nitrate-reducing Azoarcus and Acidovorax strains potentially being an important process. The presence of acetogenic and sulphate-reducing bacteria only in the planktonic clone library indicates that some natural attenuation processes may occur preferentially in one of the two growth phases (attached or planktonic). Therefore, this study has provided a better understanding of the microbial ecology of this phenol-contaminated aquifer, and it highlights the need for investigating both planktonic and attached microbial communities when assessing the potential for natural attenuation in contaminated aquifers.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodiversidade , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , Fenol/metabolismo , Fenóis/análise , Plâncton/metabolismo , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Ecossistema , Água Doce/análise , Água Doce/microbiologia , Sedimentos Geológicos/análise , Água Subterrânea/análise , Dados de Sequência Molecular , Fenol/análise , Fenóis/metabolismo , Filogenia , Plâncton/classificação , Plâncton/genética , Plâncton/isolamento & purificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
18.
Plant J ; 71(2): 226-38, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22394393

RESUMO

Plasmodiophora brassicae (clubroot) infection leads to reprogramming of host development resulting in the formation of characteristic galls. In this work we explored the cellular events that underly gall formation in Arabidopsis thaliana with the help of molecular markers of cell division (CYCB1:GUS) and meristematic activity (ANT:GUS). Our results show that gall development involved the amplification of existing meristematic activities within the vascular cambium (VC) and phloem parenchyma (PP) cells in the region of the hypocotyl. Additionally we found that the increase in VC activity and prolonged maintenance of cambial-derived cells in a meristematic state was crucial for gall formation; disruption of the VC activity significantly decreased the gall size. Gall formation also perturbed vascular development with a significant reduction in xylem and increase in PP in infected plants. This situation was reflected in a decrease in transcripts of key factors promoting xylogenesis (VND6, VND7 and MYB46) and an increase in those promoting phloem formation and function (APL, SUC2). Finally we show, using the cell cycle inhibitor ICK1/KRP1 and a cle41 mutant with altered regulation of cambial stem cell maintenance and differentiation, that a decrease in gall formation did not prevent pathogen development. This finding demonstrates that although gall formation is a typical symptom of the disease and influences numbers of spores produced, it is not required for completion of the pathogen life cycle. Together, these results provide an insight into the relationship of the cellular events that accompany Plasmodiophora infection and their role in disease progression.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Tumores de Planta/parasitologia , Plasmodioforídeos/crescimento & desenvolvimento , Animais , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/parasitologia , Proteínas de Arabidopsis/metabolismo , Câmbio/citologia , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Câmbio/parasitologia , Diferenciação Celular , Divisão Celular , Regulação da Expressão Gênica de Plantas/genética , Interações Hospedeiro-Patógeno , Hipocótilo/citologia , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/parasitologia , Estágios do Ciclo de Vida , Meristema/citologia , Meristema/genética , Meristema/parasitologia , Modelos Biológicos , Mutação , Floema/citologia , Floema/genética , Floema/crescimento & desenvolvimento , Floema/parasitologia , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/parasitologia , Plasmodioforídeos/patogenicidade , RNA de Plantas/genética , Proteínas Recombinantes de Fusão , Virulência , Xilema/citologia , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/parasitologia
19.
Environ Microbiol ; 12(9): 2496-507, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20406292

RESUMO

The formation of biofilms by diverse bacteria isolated from contaminated soil and groundwater on model substrata with different surface properties was assessed in a multifactorial screen. Diverse attachment phenotypes were observed as measured by crystal violet dye retention and confocal laser scanning microscopy (CLSM). Bulk measurements of cell hydrophobicity had little predictive ability in determining whether biofilms would develop on hydrophobic or hydrophilic substrata. Therefore selected pairs of bacteria from the genera Rhodococcus, Pseudomonas and Sphingomonas that exhibited different attachment phenotypes were examined in more detail using CLSM and the lipophilic dye, Nile Red. The association of Rhodococcus sp. cell membranes with lipids was shown to influence the attachment properties of these cells, but this approach was not informative for Pseudomonas and Sphingomonas sp. Confocal Raman Microspectroscopy of Rhodococcus biofilms confirmed the importance of lipids in their formation and indicated that in Pseudomonas and Sphingomonas biofilms, nucleic acids and proteins, respectively, were important in identifying the differences in attachment phenotypes of the selected strains. Treatment of biofilms with DNase I confirmed a determining role for nucleic acids as predicted for Pseudomonas. This work demonstrates that the attachment phenotypes of microbes from environmental samples to different substrata varies markedly, a diverse range of macromolecules may be involved and that these differ significantly between genera. A combination of CLSM and Raman spectroscopy distinguished between phenotypes and could be used to identify the key macromolecules involved in cell attachment to surfaces for the specific cases studied.


Assuntos
Aderência Bacteriana , Biofilmes , Pseudomonas/crescimento & desenvolvimento , Rhodococcus/crescimento & desenvolvimento , Sphingomonas/crescimento & desenvolvimento , Membrana Celular/química , Meio Ambiente , Microbiologia Ambiental , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Microscopia Confocal , Ácidos Nucleicos/química , Especificidade da Espécie , Análise Espectral Raman , Propriedades de Superfície
20.
FEMS Microbiol Ecol ; 71(2): 247-59, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19930459

RESUMO

Contamination of aquifers by organic pollutants threatens groundwater supplies and the environment. In situ biodegradation of organic pollutants by microbial communities is important for the remediation of contaminated sites, but our understanding of the relationship between microbial development and pollutant biodegradation is poor. A particular challenge is understanding the in situ status of microorganisms attached to solid surfaces, but not accessible via conventional sampling of groundwater. We have developed novel flow-through microcosms and examined dynamic changes in microbial community structure and function in a phenol-degrading system. Inoculation of these microcosms with a complex microbial community from a plume in a phenol-contaminated aquifer led to the initial establishment of a population dominated by a few species, most attached to the solid substratum. Initially, phenol biodegradation was incomplete, but as the microbial community structure became more complex, phenol biodegradation was more extensive and complete. These results were replicated between independent microcosms, indicating a deterministic succession of species. This work demonstrates the importance of examining community dynamics when assessing the potential for microbial biodegradation of organic pollutants. It provides a novel system in which such measurements can be made readily and reproducibly to study the temporal development and spatial succession of microbial communities during biodegradation of organic pollutants at interfaces within such environments.


Assuntos
Bactérias/isolamento & purificação , Fenol/metabolismo , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Contagem de Colônia Microbiana , DNA Bacteriano/genética , Monitoramento Ambiental , Água Doce/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA