Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Front Physiol ; 15: 1386296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742156

RESUMO

Sigmar1 is a ubiquitously expressed, multifunctional protein known for its cardioprotective roles in cardiovascular diseases. While accumulating evidence indicate a critical role of Sigmar1 in cardiac biology, its physiological function in the vasculature remains unknown. In this study, we characterized the expression of Sigmar1 in the vascular wall and assessed its physiological function in the vascular system using global Sigmar1 knockout (Sigmar1-/-) mice. We determined the expression of Sigmar1 in the vascular tissue using immunostaining and biochemical experiments in both human and mouse blood vessels. Deletion of Sigmar1 globally in mice (Sigmar1-/-) led to blood vessel wall reorganizations characterized by nuclei disarray of vascular smooth muscle cells, altered organizations of elastic lamina, and higher collagen fibers deposition in and around the arteries compared to wildtype littermate controls (Wt). Vascular function was assessed in mice using non-invasive time-transit method of aortic stiffness measurement and flow-mediated dilation (FMD) of the left femoral artery. Sigmar1-/- mice showed a notable increase in arterial stiffness in the abdominal aorta and failed to increase the vessel diameter in response to reactive-hyperemia compared to Wt. This was consistent with reduced plasma and tissue nitric-oxide bioavailability (NOx) and decreased phosphorylation of endothelial nitric oxide synthase (eNOS) in the aorta of Sigmar1-/- mice. Ultrastructural analysis by transmission electron microscopy (TEM) of aorta sections showed accumulation of elongated shaped mitochondria in both vascular smooth muscle and endothelial cells of Sigmar1-/- mice. In accordance, decreased mitochondrial respirometry parameters were found in ex-vivo aortic rings from Sigmar1 deficient mice compared to Wt controls. These data indicate a potential role of Sigmar1 in maintaining vascular homeostasis.

2.
Blood Adv ; 8(9): 2104-2117, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38498701

RESUMO

ABSTRACT: Venous thromboembolic events are significant contributors to morbidity and mortality in patients with stroke. Neutrophils are among the first cells in the blood to respond to stroke and are known to promote deep vein thrombosis (DVT). Integrin α9 is a transmembrane glycoprotein highly expressed on neutrophils and stabilizes neutrophil adhesion to activated endothelium via vascular cell adhesion molecule 1 (VCAM-1). Nevertheless, the causative role of neutrophil integrin α9 in poststroke DVT remains unknown. Here, we found higher neutrophil integrin α9 and plasma VCAM-1 levels in humans and mice with stroke. Using mice with embolic stroke, we observed enhanced DVT severity in a novel model of poststroke DVT. Neutrophil-specific integrin α9-deficient mice (α9fl/flMrp8Cre+/-) exhibited a significant reduction in poststroke DVT severity along with decreased neutrophils and citrullinated histone H3 in thrombi. Unbiased transcriptomics indicated that α9/VCAM-1 interactions induced pathways related to neutrophil inflammation, exocytosis, NF-κB signaling, and chemotaxis. Mechanistic studies revealed that integrin α9/VCAM-1 interactions mediate neutrophil adhesion at the venous shear rate, promote neutrophil hyperactivation, increase phosphorylation of extracellular signal-regulated kinase, and induce endothelial cell apoptosis. Using pharmacogenomic profiling, virtual screening, and in vitro assays, we identified macitentan as a potent inhibitor of integrin α9/VCAM-1 interactions and neutrophil adhesion to activated endothelial cells. Macitentan reduced DVT severity in control mice with and without stroke, but not in α9fl/flMrp8Cre+/- mice, suggesting that macitentan improves DVT outcomes by inhibiting neutrophil integrin α9. Collectively, we uncovered a previously unrecognized and critical pathway involving the α9/VCAM-1 axis in neutrophil hyperactivation and DVT.


Assuntos
Neutrófilos , Acidente Vascular Cerebral , Molécula 1 de Adesão de Célula Vascular , Trombose Venosa , Animais , Trombose Venosa/metabolismo , Trombose Venosa/etiologia , Neutrófilos/metabolismo , Camundongos , Humanos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/etiologia , Modelos Animais de Doenças , Ativação de Neutrófilo , Adesão Celular , Integrinas/metabolismo , Camundongos Knockout , Masculino
3.
Nat Metab ; 6(4): 617-638, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532071

RESUMO

Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.


Assuntos
Aterosclerose , Humanos , Aterosclerose/metabolismo , Animais , Macrófagos/metabolismo , Células Endoteliais/metabolismo , Músculo Liso Vascular/metabolismo , Linfócitos T/metabolismo
4.
Nat Metab ; 6(2): 359-377, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409323

RESUMO

High protein intake is common in western societies and is often promoted as part of a healthy lifestyle; however, amino-acid-mediated mammalian target of rapamycin (mTOR) signalling in macrophages has been implicated in the pathogenesis of ischaemic cardiovascular disease. In a series of clinical studies on male and female participants ( NCT03946774 and NCT03994367 ) that involved graded amounts of protein ingestion together with detailed plasma amino acid analysis and human monocyte/macrophage experiments, we identify leucine as the key activator of mTOR signalling in macrophages. We describe a threshold effect of high protein intake and circulating leucine on monocytes/macrophages wherein only protein in excess of ∼25 g per meal induces mTOR activation and functional effects. By designing specific diets modified in protein and leucine content representative of the intake in the general population, we confirm this threshold effect in mouse models and find ingestion of protein in excess of ∼22% of dietary energy requirements drives atherosclerosis in male mice. These data demonstrate a mechanistic basis for the adverse impact of excessive dietary protein on cardiovascular risk.


Assuntos
Doenças Cardiovasculares , Humanos , Masculino , Feminino , Camundongos , Animais , Leucina/metabolismo , Leucina/farmacologia , Fatores de Risco , Serina-Treonina Quinases TOR/metabolismo , Macrófagos/metabolismo , Fatores de Risco de Doenças Cardíacas , Mamíferos/metabolismo
5.
Cell Metab ; 36(1): 116-129.e7, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171331

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects one-third of the global population. Understanding the metabolic pathways involved can provide insights into disease progression and treatment. Untargeted metabolomics of livers from mice with early-stage steatosis uncovered decreased methylated metabolites, suggesting altered one-carbon metabolism. The levels of glycine, a central component of one-carbon metabolism, were lower in mice with hepatic steatosis, consistent with clinical evidence. Stable-isotope tracing demonstrated that increased serine synthesis from glycine via reverse serine hydroxymethyltransferase (SHMT) is the underlying cause for decreased glycine in steatotic livers. Consequently, limited glycine availability in steatotic livers impaired glutathione synthesis under acetaminophen-induced oxidative stress, enhancing acute hepatotoxicity. Glycine supplementation or hepatocyte-specific ablation of the mitochondrial SHMT2 isoform in mice with hepatic steatosis mitigated acetaminophen-induced hepatotoxicity by supporting de novo glutathione synthesis. Thus, early metabolic changes in MASLD that limit glycine availability sensitize mice to xenobiotics even at the reversible stage of this disease.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado Gorduroso , Animais , Camundongos , Acetaminofen/toxicidade , Carbono , Glutationa/metabolismo , Glicina/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Serina/metabolismo
6.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260582

RESUMO

Background: Neutrophil-mediated persistent inflammation and neutrophil extracellular trap formation (NETosis) promote deep vein thrombosis (DVT). CD14, a co-receptor for toll-like receptor 4 (TLR4), is actively synthesized by neutrophils, and the CD14/TLR4 signaling pathway has been implicated in proinflammatory cytokine overproduction and several aspects of thromboinflammation. The role of CD14 in the pathogenesis of DVT remains unclear. Objective: To determine whether CD14 blockade improves DVT outcomes. Methods: Bulk RNA sequencing and proteomic analyses were performed using isolated neutrophils following inferior vena cava (IVC) stenosis in mice. DVT outcomes (IVC thrombus weight and length, thrombosis incidence, neutrophil recruitment, and NETosis) were evaluated following IVC stenosis in mice treated with a specific anti-CD14 antibody, 4C1, or control antibody. Results: Mice with IVC stenosis exhibited increased plasma levels of granulocyte colony-stimulating factor (G-CSF) along with a higher neutrophil-to-lymphocyte ratio and increased plasma levels of cell-free DNA, elastase, and myeloperoxidase. Quantitative measurement of total neutrophil mRNA and protein expression revealed distinct profiles in mice with IVC stenosis compared to mice with sham surgery. Neutrophils of mice with IVC stenosis exhibited increased inflammatory transcriptional and proteomic responses, along with increased expression of CD14. Treatment with a specific anti-CD14 antibody, 4C1, did not result in any significant changes in the IVC thrombus weight, thrombosis incidence, or neutrophil recruitment to the thrombus. Conclusion: The results of the current study are important for understanding the role of CD14 in the regulation of DVT and suggest that CD14 lacks an essential role in the pathogenesis of DVT following IVC stenosis.

7.
Am J Pathol ; 194(4): 510-524, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38171450

RESUMO

Despite significant advances in medical treatments and drug development, atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of death worldwide. Dysregulated lipid metabolism is a well-established driver of ASCVD. Unfortunately, even with potent lipid-lowering therapies, ASCVD-related deaths have continued to increase over the past decade, highlighting an incomplete understanding of the underlying risk factors and mechanisms of ASCVD. Accumulating evidence over the past decades indicates a correlation between amino acids and disease state. This review explores the emerging role of amino acid metabolism in ASCVD, uncovering novel potential biomarkers, causative factors, and therapeutic targets. Specifically, the significance of arginine and its related metabolites, homoarginine and polyamines, branched-chain amino acids, glycine, and aromatic amino acids, in ASCVD are discussed. These amino acids and their metabolites have been implicated in various processes characteristic of ASCVD, including impaired lipid metabolism, endothelial dysfunction, increased inflammatory response, and necrotic core development. Understanding the complex interplay between dysregulated amino acid metabolism and ASCVD provides new insights that may lead to the development of novel diagnostic and therapeutic approaches. Although further research is needed to uncover the precise mechanisms involved, it is evident that amino acid metabolism plays a role in ASCVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Fatores de Risco , Biomarcadores , Aminoácidos/uso terapêutico
8.
Cell Rep ; 42(10): 113171, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37768825

RESUMO

Atherosclerosis, a leading health concern, stems from the dynamic involvement of immune cells in vascular plaques. Despite its significance, the interplay between chromatin remodeling and transcriptional regulation in plaque macrophages is understudied. We discovered the reduced expression of Baf60a, a component of the switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex, in macrophages from advanced plaques. Myeloid-specific Baf60a deletion compromised mitochondrial integrity and heightened adhesion, apoptosis, and plaque development. BAF60a preserves mitochondrial energy homeostasis under pro-atherogenic stimuli by retaining nuclear respiratory factor 1 (NRF1) accessibility at critical genes. Overexpression of BAF60a rescued mitochondrial dysfunction in an NRF1-dependent manner. This study illuminates the BAF60a-NRF1 axis as a mitochondrial function modulator in atherosclerosis, proposing the rejuvenation of perturbed chromatin remodeling machinery as a potential therapeutic target.


Assuntos
Aterosclerose , Fatores de Transcrição , Humanos , Aterosclerose/genética , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Homeostase , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 43(9): 1626-1635, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37381983

RESUMO

BACKGROUND: Impairments in carbohydrate, lipid, and amino acid metabolism drive features of plaque instability. However, where these impairments occur within the atheroma remains largely unknown. Therefore, we sought to characterize the spatial distribution of metabolites within stable and unstable atherosclerosis in both the fibrous cap and necrotic core. METHODS: Atherosclerotic tissue specimens from 9 unmatched individuals were scored based on the Stary classification scale and subdivided into stable and unstable atheromas. After performing mass spectrometry imaging on these samples, we identified over 850 metabolite-related peaks. Using MetaboScape, METASPACE, and Human Metabolome Database, we confidently annotated 170 of these metabolites and found over 60 of these were different between stable and unstable atheromas. We then integrated these results with an RNA-sequencing data set comparing stable and unstable human atherosclerosis. RESULTS: Upon integrating our mass spectrometry imaging results with the RNA-sequencing data set, we discovered that pathways related to lipid metabolism and long-chain fatty acids were enriched in stable plaques, whereas reactive oxygen species, aromatic amino acid, and tryptophan metabolism were increased in unstable plaques. In addition, acylcarnitines and acylglycines were increased in stable plaques whereas tryptophan metabolites were enriched in unstable plaques. Evaluating spatial differences in stable plaques revealed lactic acid in the necrotic core, whereas pyruvic acid was elevated in the fibrous cap. In unstable plaques, 5-hydroxyindoleacetic acid was enriched in the fibrous cap. CONCLUSIONS: Our work here represents the first step to defining an atlas of metabolic pathways involved in plaque destabilization in human atherosclerosis. We anticipate this will be a valuable resource and open new avenues of research in cardiovascular disease.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/química , Triptofano , Aterosclerose/diagnóstico por imagem , Espectrometria de Massas , Necrose , RNA
10.
Circ Res ; 133(3): 200-219, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37350264

RESUMO

BACKGROUND: The mTOR (mechanistic target of rapamycin) pathway is a complex signaling cascade that regulates cellular growth, proliferation, metabolism, and survival. Although activation of mTOR signaling has been linked to atherosclerosis, its direct role in lesion progression and in plaque macrophages remains poorly understood. We previously demonstrated that mTORC1 (mTOR complex 1) activation promotes atherogenesis through inhibition of autophagy and increased apoptosis in macrophages. METHODS: Using macrophage-specific Rictor- and mTOR-deficient mice, we now dissect the distinct functions of mTORC2 pathways in atherogenesis. RESULTS: In contrast to the atheroprotective effect seen with blockade of macrophage mTORC1, macrophage-specific mTORC2-deficient mice exhibit an atherogenic phenotype, with larger, more complex lesions and increased cell death. In cultured macrophages, we show that mTORC2 signaling inhibits the FoxO1 (forkhead box protein O1) transcription factor, leading to suppression of proinflammatory pathways, especially the inflammasome/IL (interleukin)-1ß response, a key mediator of vascular inflammation and atherosclerosis. In addition, administration of FoxO1 inhibitors efficiently rescued the proinflammatory response caused by mTORC2 deficiency both in vitro and in vivo. Interestingly, collective deletion of macrophage mTOR, which ablates mTORC1- and mTORC2-dependent pathways, leads to minimal change in plaque size or complexity, reflecting the balanced yet opposing roles of these signaling arms. CONCLUSIONS: Our data provide the first mechanistic details of macrophage mTOR signaling in atherosclerosis and suggest that therapeutic measures aimed at modulating mTOR need to account for its dichotomous functions.


Assuntos
Aterosclerose , Serina-Treonina Quinases TOR , Camundongos , Animais , Alvo Mecanístico do Complexo 2 de Rapamicina , Serina-Treonina Quinases TOR/metabolismo , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fatores de Transcrição/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo
11.
Front Cardiovasc Med ; 10: 1116861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200978

RESUMO

Therapeutic approaches that lower circulating low-density lipoprotein (LDL)-cholesterol significantly reduced the burden of cardiovascular disease over the last decades. However, the persistent rise in the obesity epidemic is beginning to reverse this decline. Alongside obesity, the incidence of nonalcoholic fatty liver disease (NAFLD) has substantially increased in the last three decades. Currently, approximately one third of world population is affected by NAFLD. Notably, the presence of NAFLD and particularly its more severe form, nonalcoholic steatohepatitis (NASH), serves as an independent risk factor for atherosclerotic cardiovascular disease (ASCVD), thus, raising interest in the relationship between these two diseases. Importantly, ASCVD is the major cause of death in patients with NASH independent of traditional risk factors. Nevertheless, the pathophysiology linking NAFLD/NASH with ASCVD remains poorly understood. While dyslipidemia is a common risk factor underlying both diseases, therapies that lower circulating LDL-cholesterol are largely ineffective against NASH. While there are no approved pharmacological therapies for NASH, some of the most advanced drug candidates exacerbate atherogenic dyslipidemia, raising concerns regarding their adverse cardiovascular consequences. In this review, we address current gaps in our understanding of the mechanisms linking NAFLD/NASH and ASCVD, explore strategies to simultaneously model these diseases, evaluate emerging biomarkers that may be useful to diagnose the presence of both diseases, and discuss investigational approaches and ongoing clinical trials that potentially target both diseases.

12.
Cell Metab ; 35(5): 742-757.e10, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37040763

RESUMO

Nonalcoholic steatohepatitis (NASH) prevalence is rising with no pharmacotherapy approved. A major hurdle in NASH drug development is the poor translatability of preclinical studies to safe/effective clinical outcomes, and recent failures highlight a need to identify new targetable pathways. Dysregulated glycine metabolism has emerged as a causative factor and therapeutic target in NASH. Here, we report that the tripeptide DT-109 (Gly-Gly-Leu) dose-dependently attenuates steatohepatitis and fibrosis in mice. To enhance the probability of successful translation, we developed a nonhuman primate model that histologically and transcriptionally mimics human NASH. Applying a multiomics approach combining transcriptomics, proteomics, metabolomics, and metagenomics, we found that DT-109 reverses hepatic steatosis and prevents fibrosis progression in nonhuman primates, not only by stimulating fatty acid degradation and glutathione formation, as found in mice, but also by modulating microbial bile acid metabolism. Our studies describe a highly translatable NASH model and highlight the need for clinical evaluation of DT-109.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Fibrose , Metabolismo dos Lipídeos , Primatas
13.
bioRxiv ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36711913

RESUMO

Non-alcoholic fatty liver disease (NAFLD) affects nearly one third of the population worldwide. Understanding metabolic pathways involved can provide insights into disease progression. Untargeted metabolomics of livers from mice with early-stage steatosis indicated a decrease in methylated metabolites suggesting altered one carbon metabolism. The levels of glycine, a central component of one carbon metabolism, were lower in steatotic mice, in line with clinical evidence. Isotope tracing studies demonstrated that increased synthesis of serine from glycine is the underlying cause for glycine limitation in fatty livers. Consequently, the low glycine availability in steatotic livers impaired glutathione (GSH) synthesis under oxidative stress induced by acetaminophen (APAP), enhancing hepatic toxicity. Glycine supplementation mitigated acute liver damage and overall toxicity caused by APAP in fatty livers by supporting de novo GSH synthesis. Thus, early metabolic changes in NAFLD that lead to glycine depletion sensitize mice to xenobiotic toxicity even at a reversible stage of NAFLD.

14.
Muscles ; 2(1): 51-74, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516553

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex systemic disease that primarily involves motor neuron dysfunction and skeletal muscle atrophy. One commonly used mouse model to study ALS was generated by transgenic expression of a mutant form of human superoxide dismutase 1 (SOD1) gene harboring a single amino acid substitution of glycine to alanine at codon 93 (G93A*SOD1). Although mutant-SOD1 is ubiquitously expressed in G93A*SOD1 mice, a detailed analysis of the skeletal muscle expression pattern of the mutant protein and the resultant muscle pathology were never performed. Using different skeletal muscles isolated from G93A*SOD1 mice, we extensively characterized the pathological sequelae of histological, molecular, ultrastructural, and biochemical alterations. Muscle atrophy in G93A*SOD1 mice was associated with increased and differential expression of mutant-SOD1 across myofibers and increased MuRF1 protein level. In addition, high collagen deposition and myopathic changes sections accompanied the reduced muscle strength in the G93A*SOD1 mice. Furthermore, all the muscles in G93A*SOD1 mice showed altered protein levels associated with different signaling pathways, including inflammation, mitochondrial membrane transport, mitochondrial lipid uptake, and antioxidant enzymes. In addition, the mutant-SOD1 protein was found in the mitochondrial fraction in the muscles from G93A*SOD1 mice, which was accompanied by vacuolized and abnormal mitochondria, altered OXPHOS and PDH complex protein levels, and defects in mitochondrial respiration. Overall, we reported the pathological sequelae observed in the skeletal muscles of G93A*SOD1 mice resulting from the whole-body mutant-SOD1 protein expression.

15.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36066968

RESUMO

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease. BAF60c, a unique subunit of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, is critical for cardiac and skeletal myogenesis, yet little is known about its function in the vasculature and, specifically, in AAA pathogenesis. Here, we found that BAF60c was downregulated in human and mouse AAA tissues, with primary staining to vascular smooth muscle cells (VSMCs), confirmed by single-cell RNA-sequencing. In vivo studies revealed that VSMC-specific knockout of Baf60c significantly aggravated both angiotensin II- (Ang II-) and elastase-induced AAA formation in mice, with a significant increase in elastin degradation, inflammatory cell infiltration, VSMC phenotypic switch, and apoptosis. In vitro studies showed that BAF60c knockdown in VSMCs resulted in loss of contractile phenotype, increased VSMC inflammation, and apoptosis. Mechanistically, we demonstrated that BAF60c preserved VSMC contractile phenotype by strengthening serum response factor (SRF) association with its coactivator P300 and the SWI/SNF complex and suppressing VSMC inflammation by promoting a repressive chromatin state of NF-κB target genes as well as preventing VSMC apoptosis through transcriptional activation of KLF5-dependent B cell lymphoma 2 (BCL2) expression. Our identification of the essential role of BAF60c in preserving VSMC homeostasis expands its therapeutic potential in preventing and treating AAA.


Assuntos
Aneurisma da Aorta Abdominal , Músculo Liso Vascular , Animais , Humanos , Camundongos , Angiotensina II/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Modelos Animais de Doenças , Epigênese Genética , Homeostase , Inflamação/patologia , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
16.
Am J Physiol Gastrointest Liver Physiol ; 323(3): G177-G187, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35853010

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent forms of chronic liver disease in the United States and worldwide. Nonalcoholic steatohepatitis (NASH), the most advanced form of NAFLD, is characterized by hepatic steatosis associated with inflammation and hepatocyte death. No treatments are currently available for NASH other than lifestyle changes, and the disease lacks specific biomarkers. The signaling lymphocytic activation molecule family 1 (SLAMF1) protein is a self-ligand receptor that plays a role in orchestrating an immune response to some pathogens and cancers. We found that livers from humans and mice with NASH showed a more prominent immunohistochemistry staining for SLAMF1 than non-NASH controls. Furthermore, SLAMF1 levels are significantly increased in NASH plasma samples from mice and humans compared with their respective controls. In mice, the levels of SLAMF1 correlated significantly with the severity of the NASH phenotype. To test whether SLAMF 1 is expressed by hepatocytes, HepG2 cells and primary murine hepatocytes were treated with palmitic acid (PA) to induce a state of lipotoxicity mimicking NASH. We found that PA treatments of HepG2 cells and primary hepatocytes lead to significant increases in SLAMF1 levels. The downregulation of SLAMF1 in HepG2 cells improved the cell viability and reduced cytotoxicity. The in vivo data using mouse and human NASH samples suggests a potential role for this protein as a noninvasive biomarker for NASH. The in vitro data suggest a role for SLAMF1 as a potential therapeutic target to prevent hepatocyte death in response to lipotoxicity.NEW & NOTEWORTHY This study identified for the first time SLAMF1 as a mediator of hepatocyte death in nonalcoholic fatty liver disease (NASH) and as a marker of NASH in humans. There are no pharmacological treatments available for NASH, and diagnostic tools are limited to invasive liver biopsies. Therefore, since SLAMF1 levels correlate with disease progression and SLAMF1 mediates cytotoxic effects, this protein can be used as a therapeutic target and a clinical biomarker of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo
17.
Redox Biol ; 52: 102313, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35447412

RESUMO

Lower circulating levels of glycine are consistently reported in association with cardiovascular disease (CVD), but the causative role and therapeutic potential of glycine in atherosclerosis, the underlying cause of most CVDs, remain to be established. Here, following the identification of reduced circulating glycine in patients with significant coronary artery disease (sCAD), we investigated a causative role of glycine in atherosclerosis by modulating glycine availability in atheroprone mice. We further evaluated the atheroprotective potential of DT-109, a recently identified glycine-based compound with dual lipid/glucose-lowering properties. Glycine deficiency enhanced, while glycine supplementation attenuated, atherosclerosis development in apolipoprotein E-deficient (Apoe-/-) mice. DT-109 treatment showed the most significant atheroprotective effects and lowered atherosclerosis in the whole aortic tree and aortic sinus concomitant with reduced superoxide. In Apoe-/- mice with established atherosclerosis, DT-109 treatment significantly reduced atherosclerosis and aortic superoxide independent of lipid-lowering effects. Targeted metabolomics and kinetics studies revealed that DT-109 induces glutathione formation in mononuclear cells. In bone marrow-derived macrophages (BMDMs), glycine and DT-109 attenuated superoxide formation induced by glycine deficiency. This was abolished in BMDMs from glutamate-cysteine ligase modifier subunit-deficient (Gclm-/-) mice in which glutathione biosynthesis is impaired. Metabolic flux and carbon tracing experiments revealed that glycine deficiency inhibits glutathione formation in BMDMs while glycine-based treatment induces de novo glutathione biosynthesis. Through a combination of studies in patients with CAD, in vivo studies using atherosclerotic mice and in vitro studies using macrophages, we demonstrated a causative role of glycine in atherosclerosis and identified glycine-based treatment as an approach to mitigate atherosclerosis through antioxidant effects mediated by induction of glutathione biosynthesis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Modelos Animais de Doenças , Glutamato-Cisteína Ligase , Glutationa/metabolismo , Glicina/farmacologia , Glicina/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/metabolismo , Superóxidos
18.
iScience ; 24(11): 103196, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34746691

RESUMO

The rs58542926C >T (E167K) variant of the transmembrane 6 superfamily member 2 gene (TM6SF2) is associated with increased risks for nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D). Nevertheless, the role of the TM6SF2 rs58542926 variant in glucose metabolism is poorly understood. We performed a sex-stratified analysis of the association between the rs58542926C >T variant and T2D in multiple cohorts. The E167K variant was significantly associated with T2D, especially in males. Using an E167K knockin (KI) mouse model, we found that male but not the female KI mice exhibited impaired glucose tolerance. As an ER membrane protein, TM6SF2 was found to interact with inositol-requiring enzyme 1 α (IRE1α), a primary ER stress sensor. The male Tm6sf2 KI mice exhibited impaired IRE1α signaling in the liver. In conclusion, the E167K variant of TM6SF2 is associated with glucose intolerance primarily in males, both in humans and mice.

19.
Cell Rep ; 36(4): 109420, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320345

RESUMO

Dysregulated glycine metabolism is emerging as a common denominator in cardiometabolic diseases, but its contribution to atherosclerosis remains unclear. In this study, we demonstrate impaired glycine-oxalate metabolism through alanine-glyoxylate aminotransferase (AGXT) in atherosclerosis. As found in patients with atherosclerosis, the glycine/oxalate ratio is decreased in atherosclerotic mice concomitant with suppression of AGXT. Agxt deletion in apolipoprotein E-deficient (Apoe-/-) mice decreases the glycine/oxalate ratio and increases atherosclerosis with induction of hepatic pro-atherogenic pathways, predominantly cytokine/chemokine signaling and dysregulated redox homeostasis. Consistently, circulating and aortic C-C motif chemokine ligand 5 (CCL5) and superoxide in lesional macrophages are increased. Similar findings are observed following dietary oxalate overload in Apoe-/- mice. In macrophages, oxalate induces mitochondrial dysfunction and superoxide accumulation, leading to increased CCL5. Conversely, AGXT overexpression in Apoe-/- mice increases the glycine/oxalate ratio and decreases aortic superoxide, CCL5, and atherosclerosis. Our findings uncover dysregulated oxalate metabolism via suppressed AGXT as a driver and therapeutic target in atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Terapia de Alvo Molecular , Oxalatos/metabolismo , Animais , Aorta/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Ácidos e Sais Biliares/metabolismo , Linhagem Celular , Quimiocina CCL5/metabolismo , Colesterol/metabolismo , Dependovirus/metabolismo , Feminino , Glicina/metabolismo , Homeostase , Humanos , Inflamação/patologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo , Superóxidos/metabolismo , Transaminases/deficiência , Transaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA