Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(30): 21832-21858, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38984259

RESUMO

Global concerns about food security, driven by rising demand, have prompted the exploration of nanotechnology as a solution to enhance food supply. This shift comes in response to the limitations of conventional technologies in meeting the ever-increasing demand for food products. Consequently, nanoparticles play a crucial role in enhancing food production, preservation, and extending shelf life by imparting exceptional properties to materials. Nanoparticles and nanostructures with attributes like expansive surface area and antimicrobial efficacy, are versatile in both traditional packaging and integration into biopolymer matrices. These distinctive qualities contribute to their extensive use in various food sector applications. Hence, this review explores the physicochemical properties, functions, and biological aspects of nanoparticles in the context of food packaging. Furthermore, the synergistic effect of nanoparticles with different biopolymers, alongside its different potential applications such as food shelf-life extenders, antimicrobial agents and as nanomaterials for developing smart packaging systems were summarily explored. While the ongoing exploration of this research area is evident, our review highlights the substantial potential of nanomaterials to emerge as a viable choice for food packaging if the challenges regarding toxicity are carefully and effectively modulated.

2.
Polymers (Basel) ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447512

RESUMO

Chitosan is a naturally occurring compound that can be obtained from deacetylated chitin, which is obtained from various sources such as fungi, crustaceans, and insects. Commercially, chitosan is produced from crustaceans. Based on the range of its molecular weight, chitosan can be classified into three different types, namely, high molecular weight chitosan (HMWC, >700 kDa), medium molecular weight chitosan (MMWC, 150-700 kDa), and low molecular weight chitosan (LMWC, less than 150 kDa). Chitosan shows several properties that can be applied in horticultural crops, such as plant root growth enhancer, antimicrobial, antifungal, and antiviral activities. Nevertheless, these properties depend on its molecular weight (MW) and acetylation degree (DD). Therefore, this article seeks to extensively review the properties of chitosan applied in the agricultural sector, classifying them in relation to chitosan's MW, and its use as a material for sustainable agriculture.

3.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884770

RESUMO

Nitrogen oxides (NOx) are among the main atmospheric pollutants; therefore, it is important to monitor and detect their presence in the atmosphere. To this end, low-dimensional carbon structures have been widely used as NOx sensors for their outstanding properties. In particular, carbon nanotubes (CNTs) have been widely used as toxic-gas sensors owing to their high specific surface area and excellent mechanical properties. Although pristine CNTs have shown promising performance for NOx detection, several strategies have been developed such as surface functionalization and defect engineering to improve the NOx sensing of pristine CNT-based sensors. Through these strategies, the sensing properties of modified CNTs toward NOx gases have been substantially improved. Therefore, in this review, we have analyzed the defect engineering and surface functionalization strategies used in the last decade to modify the sensitivity and the selectivity of CNTs to NOx. First, the different types of surface functionalization and defect engineering were reviewed. Thereafter, we analyzed experimental, theoretical, and coupled experimental-theoretical studies on CNTs modified through surface functionalization and defect engineering to improve the sensitivity and selectivity to NOx. Finally, we presented the conclusions and the future directions of modified CNTs as NOx sensors.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Nanotubos de Carbono/química , Óxidos de Nitrogênio/análise , Poluição do Ar/análise , Combustíveis Fósseis/efeitos adversos , Nanotecnologia , Emissões de Veículos/análise
4.
Polymers (Basel) ; 13(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34641030

RESUMO

Chitosan-gold nanoparticle (CS/AuNP) thin films were synthesized through the chemical reduction of HAuCl4 in sodium citrate/chitosan solutions. The dielectric and dynamic mechanical behaviors of CS/AuNP films have been investigated as a function of moisture and HAuCl4 content. Two relaxation processes in the nanocomposites have been observed. The α-relaxation process is related to a glass transition in wet CS/AuNP films. However, in dry composites (with 0.2 wt% of moisture content), the glass transition vanished. A second relaxation process was observed from 70 °C to the onset of thermal degradation (160 °C) in wet films and from 33 °C to the onset of degradation in dry films. This relaxation is identified as the σ-relaxation and may be related to the local diffusion process of ions between high potential barriers in disordered systems. The α- and σ-relaxation processes are affected by the HAuCl4 content of the solutions from which films were obtained because of the interaction between CS, sodium succinate, and gold nanoparticles. With about 0.6 mM of HAuCl4, the conductivity of both wet and dry films sharply increased by six orders, corresponding to the percolation effect, which may be related to the appearance of a conductivity pathway between AuNPs, HAuCl4, and NaCl.

5.
Polymers (Basel) ; 11(3)2019 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-30960435

RESUMO

In this study, a coating from electrospun silk fibroin was performed with the aim to modify the surface of breast implants. We evaluated the effect of fibroin on polymeric matrices of poly (ethylene oxide) (PEO) to enhance cell viability, adhesion, and proliferation of HaCaT human keratinocytes to enhance the healing process on breast prosthesis implantation. We electrospun six blends of fibroin and PEO at different concentrations. These scaffolds were characterized by scanning electron microscopy, contact angle measurements, ATR-FTIR spectroscopy, and X-ray diffraction. We obtained diverse network conformations at different combinations to examine the regulation of cell adhesion and proliferation by modifying the microstructure of the matrix to be applied as a potential scaffold for coating breast implants. The key contribution of this work is the solution it provides to enhance the healing process on prosthesis implantation considering that the use of these PEO⁻fibroin scaffolds reduced (p < 0.05) the amount of pyknotic nuclei. Therefore, viability of HaCaT human keratinocytes on PEO⁻fibroin matrices was significantly improved (p < 0.001). These findings provide a rational strategy to coat breast implants improving biocompatibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA