Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mitochondrial DNA B Resour ; 9(7): 886-891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027115

RESUMO

Holocephali is a subclass of chondrichthyans with ample geographic distribution in marine ecosystems. Holocephalan species are organized into three families: Callorhinchidae, Chimaeridae, and Rhinochimaeridae. Despite the critical ecological and evolutionary importance, genomic information from holocephalans is still scarce, particularly from rhinochimaerids. The present study provides the first complete mitogenome of the Atlantic longnose chimaera Rhinochimaera atlantica (Holt & Byrne, 1909). The whole mitogenome was sequenced from an R. atlantica specimen, collected on the Porcupine Bank (NE Atlantic), by Illumina high-throughput sequencing. The R. atlantica mitogenome has 17,852 nucleotides with 13 protein-coding genes, 22 transfer RNA, and two ribosomal RNA genes. Nine of these genes are in the complementary strand. This mitogenome has a GC content of 41.5% and an AT content of 58.5%. The phylogenetic reconstruction provided here, using all the available complete and partial Holocephali mitogenomes, places R. atlantica in the Rhinochimaeridae family, as expected. This genomic resource will be useful in the genomic characterization of this species.

2.
Open Biol ; 13(12): 230181, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38113934

RESUMO

Mitogenomes are defined as compact and structurally stable over aeons. This perception results from a vertebrate-centric vision, where few types of mtDNA rearrangements are described. Here, we bring a new light to the involvement of mitochondrial replication in the strand asymmetry of the vertebrate mtDNA. Using several species of deep-sea hatchetfish (Sternoptychidae) displaying distinct mtDNA structural arrangements, we unravel the inversion of the coding direction of protein-coding genes (PCGs). This unexpected change is coupled with a strand asymmetry nucleotide composition reversal and is shown to be directly related to the strand location of the Control Region (CR). An analysis of the fourfold redundant sites of the PCGs (greater than 6000 vertebrates), revealed the rarity of this phenomenon, found in nine fish species (five deep-sea hatchetfish). Curiously, in Antarctic notothenioid fishes (Trematominae), where a single PCG inversion (the only other record in fish) is coupled with the inversion of the CR, the standard asymmetry is disrupted for the remaining PCGs but not yet reversed, suggesting a transitory state. Our results hint that a relaxation of the classic vertebrate mitochondrial structural stasis promotes disruption of the natural balance of asymmetry of the mtDNA. These findings support the long-lasting hypothesis that replication is the main molecular mechanism promoting the strand-specific compositional bias of this unique and indispensable molecule.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/química , Mitocôndrias/genética , Peixes/genética
3.
Mitochondrial DNA B Resour ; 7(3): 434-437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35274036

RESUMO

Chondrichthyans (sharks, rays and chimeras) are a fascinating and highly vulnerable group of early branching gnathostomes. However, they remain comparatively poorly sampled from the point of view of molecular resources, with deep water taxa being particularly data deficient. The development of long-read sequencing technologies enables the analysis of phylogenetic relationships through a precise and reliable assembly of complete mtDNA genomes. The sequencing and characterization of the complete mitogenome of the opal chimera Chimera opalescens Luchetti, Iglésias et Sellos 2011, using the long-read technique PacBio HiFi is presented. The entire mitogenome was 23,411 bp long and shows the same overall content, i.e. 13 protein-coding genes, 22 transfer RNA and 2 ribosomal RNA genes, as all other examined Chondrichthyan mitogenomes. Phylogenetic reconstructions using all available Chondrichthyan mitogenomes, including 11 Holocephali (chimeras and ratfishes), places C. opalescens within the Chimaeridae family. Furthermore, the results reinforce previous findings, showing the genus Chimera as paraphyletic and thus highlighting the need to expand molecular approaches in this group of cartilaginous fishes.

4.
Gen Comp Endocrinol ; 295: 113527, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32526329

RESUMO

Nuclear receptors (NRs) are key transcription factors that originated in the common ancestor of metazoans. The vast majority of NRs are triggered by binding to either endogenous (e.g. retinoic acid) or exogenous (e.g. xenobiotics) ligands, and their evolution and expansion is tightly linked to the function of endocrine systems. Importantly, they represent classic targets of physiological exploitation by endocrine disrupting chemicals. The NR gene repertoire in different lineages has been shaped by gene loss, duplication and mutation, denoting a dynamic evolutionary route. As the earliest diverging class of gnathostomes (jawed vertebrates), cartilaginous fishes offer an exceptional opportunity to address the early diversification of NR gene families and the evolution of the endocrine system in jawed vertebrates. Here we provide an exhaustive analysis into the NR gene composition in five elasmobranch (sharks and rays) and two holocephalan (chimaeras) species. For this purpose, we generated also a low coverage draft genome assembly of the chimaera small-eyed rabbitfish, Hydrolagus affinis. We show that cartilaginous fish retain an archetypal NR gene repertoire, similar to that of mammals and coincident with the two rounds of whole genome duplication that occurred in the gnathostome ancestor. Furthermore, novel gene members of the non-canonical NR0B receptors were found in the genomes of this lineage. Our findings provide an essential view into the early diversification of NRs in gnathostomes, paving the way for functional studies.


Assuntos
Evolução Molecular , Peixes/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Teorema de Bayes , Duplicação Gênica , Genoma , Filogenia , Fatores de Transcrição/genética
5.
Mitochondrial DNA B Resour ; 5(3): 2850-2852, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33457974

RESUMO

Species of the Sternoptychidae teleost family display an impressive morphology, including their extreme reduced size. Here, we report the first mitochondrial genome of the diaphanous hatchet fish Sternoptyx diaphana. By using short-read sequencing Illumina HiSeq, we generated two mitochondrial contigs which were later physically assembled by PCR. The mitochondrial genome of S. diaphana was 17,224 bp in length (excluding the control region) and is composed of 13 PCGs and 2 ribosomal RNA genes. Strikingly, we could not identify the tRNA-Phe and two copies of tRNA-Met were differently positioned. Additionally, the mitogenome displays a completely new gene rearrangement among vertebrates. We expect that the study presented here will pave the way for further molecular studies with this underrepresented group of illusive teleost fish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA