Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biometals ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538957

RESUMO

Over recent years, we have been living under a pandemic, caused by the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). One of the major virulence factors of Coronaviruses is the Non-structural protein 1 (Nsp1), known to suppress the host cells protein translation machinery, allowing the virus to produce its own proteins, propagate and invade new cells. To unveil the molecular mechanisms of SARS-CoV2 Nsp1, we have addressed its biochemical and biophysical properties in the presence of calcium, magnesium and manganese. Our findings indicate that the protein in solution is a monomer and binds to both manganese and calcium, with high affinity. Surprisingly, our results show that SARS-CoV2 Nsp1 alone displays metal-dependent endonucleolytic activity towards both RNA and DNA, regardless of the presence of host ribosome. These results show Nsp1 as new nuclease within the coronavirus family. Furthermore, the Nsp1 double variant R124A/K125A presents no nuclease activity for RNA, although it retains activity for DNA, suggesting distinct binding sites for DNA and RNA. Thus, we present for the first time, evidence that the activities of Nsp1 are modulated by the presence of different metals, which are proposed to play an important role during viral infection. This research contributes significantly to our understanding of the mechanisms of action of Coronaviruses.

2.
Front Microbiol ; 14: 1240798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692390

RESUMO

Arsenic (As) is a toxic heavy metal widely found in the environment that severely undermines the integrity of water resources. Bioremediation of toxic compounds is an appellative sustainable technology with a balanced cost-effective setup. To pave the way for the potential use of Deinococcus indicus, an arsenic resistant bacterium, as a platform for arsenic bioremediation, an extensive characterization of its resistance to cellular insults is paramount. A comparative analysis of D. indicus cells grown in two rich nutrient media conditions (M53 and TGY) revealed distinct resistance patterns when cells are subjected to stress via UV-C and methyl viologen (MV). Cells grown in M53 demonstrated higher resistance to both UV-C and MV. Moreover, cells grow to higher density upon exposure to 25 mM As(V) in M53 in comparison with TGY. This analysis is pivotal for the culture of microbial species in batch culture bioreactors for bioremediation purposes. We also demonstrate for the first time the presence of polyphosphate granules in D. indicus which are also found in a few Deinococcus species. To extend our analysis, we also characterized DiArsC2 (arsenate reductase) involved in arsenic detoxification and structurally determined different states, revealing the structural evidence for a catalytic cysteine triple redox system. These results contribute for our understanding into the D. indicus resistance mechanism against stress conditions.

3.
Front Microbiol ; 14: 1266785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771704

RESUMO

The extremely radiation and desiccation resistant bacterium Deinococcus radiodurans possesses three genes encoding Endonuclease III-like enzymes (DrEndoIII1, DrEndoIII2, DrEndoIII3). In vitro enzymatic activity measurements revealed that DrEndoIII2 is the main Endonuclease III in this organism, while DrEndoIII1 and 3 possess unusual and, so far, no detectable EndoIII activity, respectively. In order to understand the role of these enzymes at a cellular level, DrEndoIII knockout mutants were constructed and subjected to various oxidative stress related conditions. The results showed that the mutants are as resistant to ionizing and UV-C radiation as well as H2O2 exposure as the wild type. However, upon exposure to oxidative stress induced by methyl viologen, the knockout strains were more resistant than the wild type. The difference in resistance may be attributed to the observed upregulation of the EndoIII homologs gene expression upon addition of methyl viologen. In conclusion, our data suggest that all three EndoIII homologs are crucial for cell survival in stress conditions, since the knockout of one of the genes tend to be compensated for by overexpression of the genes encoding the other two.

4.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807291

RESUMO

Repair of Iron Center proteins (RIC) form a family of di-iron proteins that are widely spread in the microbial world. RICs contain a binuclear nonheme iron site in a four-helix bundle fold, two basic features of hemerythrin-like proteins. In this work, we review the data on microbial RICs including how their genes are regulated and contribute to the survival of pathogenic bacteria. We gathered the currently available biochemical, spectroscopic and structural data on RICs with a particular focus on Escherichia coli RIC (also known as YtfE), which remains the best-studied protein with extensive biochemical characterization. Additionally, we present novel structural data for Escherichia coli YtfE harboring a di-manganese site and the protein's affinity for this metal. The networking of protein interactions involving YtfE is also described and integrated into the proposed physiological role as an iron donor for reassembling of stress-damaged iron-sulfur centers.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Hemeritrina/genética , Hemeritrina/metabolismo , Ferro/química , Proteínas Ferro-Enxofre/metabolismo , Enxofre/metabolismo
5.
Microorganisms ; 9(6)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203091

RESUMO

In yeast, iron storage and detoxification depend on the Ccc1 transporter that mediates iron accumulation in vacuoles. While deletion of the CCC1 gene renders cells unable to survive under iron overload conditions, the deletion of its previously identified regulators only partially affects survival, indicating that the mechanisms controlling iron storage and detoxification in yeast are still far from well understood. This work reveals that CCC1 is equipped with a complex transcriptional structure comprising several regulatory regions. One of these is located inside the coding sequence of the gene and drives the expression of a short transcript encoding an N-terminally truncated protein, designated as s-Ccc1. s-Ccc1, though less efficiently than Ccc1, is able to promote metal accumulation in the vacuole, protecting cells against iron toxicity. While the expression of the s-Ccc1 appears to be repressed in the normal genomic context, our current data clearly demonstrates that it is functional and has the capacity to play a role under iron overload conditions.

6.
Front Microbiol ; 12: 670681, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995335

RESUMO

Escherichia coli YtfE is a di-iron protein of the widespread Repair of Iron Centers proteins (RIC) family that has the capacity to donate iron, which is a crucial component of the biogenesis of the ubiquitous family of iron-sulfur proteins. In this work we identify in E. coli a previously unrecognized link between the YtfE protein and the major bacterial system for iron-sulfur cluster (ISC) assembly. We show that YtfE establishes protein-protein interactions with the scaffold IscU, where the transient cluster is formed, and the cysteine desulfurase IscS. Moreover, we found that promotion by YtfE of the formation of an Fe-S cluster in IscU requires two glutamates, E125 and E159 in YtfE. Both glutamates form part of the entrance of a protein channel in YtfE that links the di-iron center to the surface. In particular, E125 is crucial for the exit of iron, as a single mutation to leucine closes the channel rendering YtfE inactive for the build-up of Fe-S clusters. Hence, we provide evidence for the key role of RICs as bacterial iron donor proteins involved in the biogenesis of Fe-S clusters.

7.
FEBS J ; 288(3): 961-979, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32535996

RESUMO

BolA has been characterized as an important transcriptional regulator, which is induced in stationary phase of growth, and in response to several stresses. In Escherichia coli, its cellular function is associated with cell wall synthesis and division, morphology, permeability, motility and biofilm formation. Phosphorylation has been widely described as one of the most important events involved in the modulation of the activity of many transcription factors. In the present work, we have demonstrated in vivo and by mass spectrometry that BolA is phosphorylated in four highly conserved protein positions: S26, S45, T81 and S95. S95 is located in the C terminus unstructured region of the protein, and the other three sites are in the DNA-binding domain. These positions were mutated to nonphosphorylated residues, and their effects were investigated on different known BolA functions. Using northern blot experiments, we showed that the regulation of the expression of these Ser/Thr BolA mutants is performed at the post-translational level. Western blot results revealed that the stability/turnover of the mutated BolA proteins is differently affected depending on the dephosphorylated residue. Moreover, we provide evidences that phosphorylation events are crucial in the modulation of BolA activity as a transcription factor and as a regulator of cell morphology and biofilm development. Here, we propose that phosphorylation affects BolA downstream functions and discuss the possible significance of these phosphoresidues in the protein structure, stability, dimerization and function as a transcription factor.


Assuntos
Biofilmes/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Western Blotting , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massas/métodos , Mutação , Fosforilação , Domínios Proteicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Serina/química , Serina/genética , Serina/metabolismo , Treonina/química , Treonina/genética , Treonina/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
8.
Sci Rep ; 9(1): 17217, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748604

RESUMO

The bacterium Deinococcus radiodurans is highly resistant to several stress conditions, such as radiation. According to several reports, manganese plays a crucial role in stress protection, and a high Mn/Fe ratio is essential in this process. However, mobilization of manganese and iron, and the role of DNA-binding-proteins-under-starved-conditions during oxidative-stress remained open questions. We used synchrotron-based X-ray fluorescence imaging at nano-resolution to follow element-relocalization upon stress, and its dependency on the presence of Dps proteins, using dps knockout mutants. We show that manganese, calcium, and phosphorus are mobilized from rich-element regions that resemble electron-dense granules towards the cytosol and the cellular membrane, in a Dps-dependent way. Moreover, iron delocalizes from the septum region to the cytoplasm affecting cell division, specifically in the septum formation. These mechanisms are orchestrated by Dps1 and Dps2, which play a crucial role in metal homeostasis, and are associated with the D. radiodurans tolerance against reactive oxygen species.


Assuntos
Proteínas de Bactérias/metabolismo , Citoproteção/efeitos dos fármacos , Deinococcus/crescimento & desenvolvimento , Ferro/metabolismo , Manganês/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Proteínas de Bactérias/genética , Deinococcus/efeitos dos fármacos , Herbicidas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
9.
Free Radic Biol Med ; 140: 36-60, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30735841

RESUMO

Microbial anaerobes are exposed in the natural environment and in their hosts, even if transiently, to fluctuating concentrations of oxygen and its derived reactive species, which pose a considerable threat to their anoxygenic lifestyle. To counteract these stressful conditions, they contain a multifaceted array of detoxifying systems that, in conjugation with cellular repairing mechanisms and in close crosstalk with metal homeostasis, allow them to survive in the presence of O2 and reactive oxygen species. Some of these systems are shared with aerobes, but two families of enzymes emerged more recently that, although not restricted to anaerobes, are predominant in anaerobic microbes. These are the iron-containing superoxide reductases, and the flavodiiron proteins, endowed with O2 and/or NO reductase activities, which are the subject of this Review. A detailed account of their physicochemical, physiological and molecular mechanisms will be presented, highlighting their unique properties in allowing survival of anaerobes in oxidative stress conditions, and comparing their properties with the most well-known detoxifying systems.


Assuntos
Ferro/metabolismo , Estresse Oxidativo , Oxirredutases/metabolismo , Proteínas/metabolismo , Anaerobiose/genética , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
J Struct Biol ; 205(1): 91-102, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447285

RESUMO

Flavodiiron proteins (FDPs) play key roles in biological response mechanisms against oxygen and/or nitric oxide; in particular they are present in oxygenic phototrophs (including cyanobacteria and gymnosperms). Two conserved domains define the core of this family of proteins: a N-terminal metallo-ß-lactamase-like domain followed by a C-terminal flavodoxin-like one, containing the catalytic diiron centre and a FMN cofactor, respectively. Members of the FDP family may present extra modules in the C-terminus, and were classified into several classes according to their distribution and composition. The cyanobacterium Synechocystis sp. PCC6803 contains four Class C FDPs (Flv1-4) that include at the C-terminus an additional NAD(P)H:flavin oxidoreductase (FlR) domain. Two of them (Flv3 and Flv4) have the canonical diiron ligands (Class C, Type 1), while the other two (Flv1 and Flv2) present different residues in that region (Class C, Type 2). Most phototrophs, either Bacterial or Eukaryal, contain at least two FDP genes, each encoding for one of those two types. Crystals of the Flv1 two core domains (Flv1-ΔFlR), without the C-terminal NAD(P)H:flavin oxidoreductase extension, were obtained and the structure was determined. Its pseudo diiron site contains non-canonical basic and neutral residues, and showed anion moieties, instead. The presented structure revealed for the first time the structure of the two-domain core of a Class C-Type 2 FDP.


Assuntos
Proteínas de Bactérias/química , Ferroproteínas não Heme/química , Synechocystis/química , Ferro , Ligantes , Estrutura Molecular , Domínios Proteicos
11.
Biochemistry ; 57(36): 5271-5281, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-29939726

RESUMO

Superoxide reductases (SORs) are enzymes that detoxify the superoxide anion through its reduction to hydrogen peroxide and exist in both prokaryotes and eukaryotes. The substrate is transformed at an iron catalytic center, pentacoordinated in the ferrous state by four histidines and one cysteine. SORs have a highly conserved motif, (E)(K)HxP-, in which the glutamate is associated with a redox-driven structural change, completing the octahedral coordination of the iron in the ferric state, whereas the lysine may be responsible for stabilization and donation of a proton to catalytic intermediates. We aimed to understand at the structural level the role of these two residues, by determining the X-ray structures of the SORs from the hyperthermophilic archaea Ignicoccus hospitalis and Nanoarchaeum equitans that lack the quasi-conserved lysine and glutamate, respectively, but have catalytic rate constants similar to those of the canonical enzymes, as we previously demonstrated. Furthermore, we have determined the crystal structure of the E23A mutant of I. hospitalis SOR, which mimics several enzymes that lack both residues. The structures revealed distinct structural arrangements of the catalytic center that simulate several catalytic cycle intermediates, namely, the reduced and the oxidized forms, and the glutamate-free and deprotonated ferric forms. Moreover, the structure of the I. hospitalis SOR provides evidence for the presence of an alternative lysine close to the iron center in the reduced state that may be a functional substitute for the "canonical" lysine.


Assuntos
Proteínas Arqueais/química , Desulfurococcaceae/enzimologia , Nanoarchaeota/enzimologia , Oxirredutases/química , Superóxidos/química , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Catálise , Crioprotetores , Cristalização , Cristalografia por Raios X , Oxirredução , Oxirredutases/metabolismo , Conformação Proteica , Homologia de Sequência , Superóxidos/metabolismo
12.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 231-246, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29100789

RESUMO

Plant calcium-dependent protein kinases (CDPKs) are key proteins implicated in calcium-mediated signaling pathways of a wide range of biological events in the organism. The action of each particular CDPK is strictly regulated by many mechanisms in order to ensure an accurate signal translation and the activation of the adequate response processes. In this work, we investigated the regulation of a CDPK involved in rice cold stress response, OsCPK17, to better understand its mode of action. We identified two new alternative splicing (AS) mRNA forms of OsCPK17 encoding truncated versions of the protein, missing the CDPK activation domain. We analyzed the expression patterns of all AS variants in rice tissues and examined their subcellular localization in onion epidermal cells. The results indicate that the AS of OsCPK17 putatively originates truncated forms of the protein with distinct functions, and different subcellular and tissue distributions. Additionally, we addressed the regulation of OsCPK17 by post-translational modifications in several in vitro experiments. Our analysis indicated that OsCPK17 activity depends on its structural rearrangement induced by calcium binding, and that the protein can be autophosphorylated. The identified phosphorylation sites mostly populate the OsCPK17 N-terminal domain. Exceptions are phosphosites T107 and S136 in the kinase domain and S558 in the C-terminal domain. These phosphosites seem conserved in CDPKs and may reflect a common regulatory mechanism for this protein family.


Assuntos
Processamento Alternativo/fisiologia , Proteínas e Peptídeos de Choque Frio , Oryza , Proteínas de Plantas , Proteínas Quinases , Cálcio/metabolismo , Proteínas e Peptídeos de Choque Frio/química , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
13.
J Mol Biol ; 429(5): 667-687, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28088481

RESUMO

The radiation-resistant bacterium Deinococcus radiodurans contains two DNA-binding proteins from starved cells (Dps): Dps1 (DR2263) and Dps2 (DRB0092). These are suggested to play a role in DNA interaction and manganese and iron storage. The proteins assemble as a conserved dodecameric structure with structurally uncharacterised N-terminal extensions. In the case of DrDps1, these extensions have been proposed to be involved in DNA interactions, while in DrDps2, their function has yet to be established. The reported data reveal the relative position of the N-terminal extensions to the dodecameric sphere in solution for both Dps. The low-resolution small angle X-ray scattering (SAXS) results show that the N-terminal extensions protrude from the spherical shell of both proteins. The SAXS envelope of a truncated form of DrDps1 without the N-terminal extensions appears as a dodecameric sphere, contrasting strongly with the protrusions observed in the full-length models. The effect of iron incorporation into DrDps2 was investigated by static and stopped-flow SAXS measurements, revealing dynamic structural changes upon iron binding and core formation, as reflected by a quick alteration of its radius of gyration. The truncated and full-length versions of DrDps were also compared on the basis of their interaction with DNA to analyse functional roles of the N-terminal extensions. DrDps1 N-terminal protrusions appear to be directly involved with DNA, whilst those from DrDps2 are indirectly associated with DNA binding. Furthermore, detection of DrDps2 in the D. radiodurans membrane fraction suggests that the N-terminus of the protein interacts with the membrane.


Assuntos
Proteínas de Bactérias/química , Deinococcus/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Sequência de Aminoácidos , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA , Deinococcus/genética , Ferro/metabolismo , Manganês/metabolismo , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência
14.
Environ Microbiol ; 19(1): 106-118, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27486032

RESUMO

The sulfate-reducing bacteria of the Desulfovibrio genus make three distinct modified tetrapyrroles, haem, sirohaem and adenosylcobamide, where sirohydrochlorin acts as the last common biosynthetic intermediate along the branched tetrapyrrole pathway. Intriguingly, D. vulgaris encodes two sirohydrochlorin chelatases, CbiKP and CbiKC , that insert cobalt/iron into the tetrapyrrole macrocycle but are thought to be distinctly located in the periplasm and cytoplasm respectively. Fusing GFP onto the C-terminus of CbiKP confirmed that the protein is transported to the periplasm. The structure-function relationship of CbiKP was studied by constructing eleven site-directed mutants and determining their chelatase activities, oligomeric status and haem binding abilities. Residues His154 and His216 were identified as essential for metal-chelation of sirohydrochlorin. The tetrameric form of the protein is stabilized by Arg54 and Glu76, which form hydrogen bonds between two subunits. His96 is responsible for the binding of two haem groups within the main central cavity of the tetramer. Unexpectedly, CbiKP is shown to bind two additional haem groups through interaction with His103. Thus, although still retaining cobaltochelatase activity, the presence of His96 and His103 in CbiKP , which are absent from all other known bacterial cobaltochelatases, has evolved CbiKP a new function as a haem binding protein permitting it to act as a potential haem chaperone or transporter.


Assuntos
Proteínas de Bactérias/genética , Desulfovibrio vulgaris/enzimologia , Desulfovibrio vulgaris/genética , Heme/análogos & derivados , Liases/genética , Tetrapirróis/metabolismo , Uroporfirinas/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/genética , Desulfovibrio vulgaris/metabolismo , Ferroquelatase/genética , Ferroquelatase/metabolismo , Heme/metabolismo , Proteínas Ligantes de Grupo Heme , Hemeproteínas/genética , Histidina/metabolismo
15.
J Mol Biol ; 428(23): 4686-4707, 2016 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-27725182

RESUMO

Flavodiiron proteins (FDPs) are present in organisms from all domains of life and have been described so far to be involved in the detoxification of oxygen or nitric oxide (NO), acting as O2 and/or NO reductases. The Escherichia coli FDP, named flavorubredoxin (FlRd), is the most extensively studied FDP. Biochemical and in vivo studies revealed that FlRd is involved in NO detoxification as part of the bacterial defense mechanisms against reactive nitrogen species. E. coli FlRd has a clear preference for NO as a substrate in vitro, exhibiting a very low reactivity toward O2. To contribute to the understanding of the structural features defining this substrate selectivity, we determined the crystallographic structure of E. coli FlRd, both in the isolated and reduced states. The overall tetrameric structure revealed a highly conserved flavodiiron core domain, with a metallo-ß-lactamase-like domain containing a diiron center, and a flavodoxin domain with a flavin mononucleotide cofactor. The metal center in the oxidized state has a µ-hydroxo bridge coordinating the two irons, while in the reduced state, this moiety is not detected. Since only the flavodiiron domain was observed in these crystal structures, the structure of the rubredoxin domain was determined by NMR. Tunnels for the substrates were identified, and through molecular dynamics simulations, no differences for O2 or NO permeation were found. The present data represent the first structure for a NO-selective FDP.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Oxirredutases/química , Fatores de Transcrição/química , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato , Fatores de Transcrição/metabolismo
16.
Mar Environ Res ; 114: 65-73, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26790096

RESUMO

Deep sea hydrothermal Bathymodiolus azoricus mussels from Portuguese EEZ Menez Gwen hydrothermal field possess the remarkable ability to overcome decompression and survive successfully at atmospheric pressure conditions. We investigated the potential use of antioxidant defense enzymes in mussel B. azoricus as biomarkers of oxidative stress induced by long term acclimatization to atmospheric pressure conditions. Mussels collected at Menez Gwen hydrothermal field were acclimatized for two weeks in three distinct conditions suitable of promoting physiological stress, (i) in plain seawater for concomitant endosymbiont bacteria loss, (ii) in plain seawater under metal iron exposure, (iii) constant bubbling methane and pumped sulfide for endosymbiont bacteria survival. The enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and iron storage proteins in addition to electrophoretic profiles were examined in vent mussel gills and digestive gland. Gills showed approximately 3 times more SOD specific activity than digestive glands. On the other hand, digestive glands showed approximately 6 times more CAT specific activity than gills. Iron storage proteins were identified in gill extracts from all experimental conditions mussels. However, in digestive gland extracts only fresh collected mussels and after 2 weeks in FeSO4 showed the presence of iron storage proteins. The differences between SOD, CAT specific activities and the presence of iron storage proteins in the examined tissues reflect dissimilar metabolic and antioxidant activities, as a result of tissue specificities and acclimatization conditions influences on the organism.


Assuntos
Antioxidantes/metabolismo , Pressão Atmosférica , Mytilidae/fisiologia , Água do Mar/microbiologia , Estresse Fisiológico , Animais , Açores , Fenômenos Fisiológicos Bacterianos , Fontes Hidrotermais , Metano/metabolismo , Mytilidae/enzimologia , Mytilidae/microbiologia , Oxirredutases/metabolismo , Água do Mar/química , Sulfetos/metabolismo , Simbiose
17.
J Biol Inorg Chem ; 21(1): 39-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26767750

RESUMO

Flavodiiron proteins have emerged in the last two decades as a newly discovered family of oxygen and/or nitric oxide reductases widespread in the three life domains, and present in both aerobic and anaerobic organisms. Herein we present the main features of these fascinating enzymes, with a particular emphasis on the metal sites, as more appropriate for this special issue in memory of the exceptional bioinorganic scientist R. J. P. Williams who pioneered the notion of (metal) element availability-driven evolution. We also compare the flavodiiron proteins with the other oxygen and nitric oxide reductases known until now, highlighting how throughout evolution Nature arrived at different solutions for similar functions, in some cases adding extra features, such as energy conservation. These enzymes are an example of the (bioinorganic) unpredictable diversity of the living world.


Assuntos
Ferro/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Proteínas/metabolismo
18.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 11): 2236-47, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26527141

RESUMO

Superoxide reductase (SOR), which is commonly found in prokaryotic organisms, affords protection from oxidative stress by reducing the superoxide anion to hydrogen peroxide. The reaction is catalyzed at the iron centre, which is highly conserved among the prokaryotic SORs structurally characterized to date. Reported here is the first structure of an SOR from a eukaryotic organism, the protozoan parasite Giardia intestinalis (GiSOR), which was solved at 2.0 Å resolution. By collecting several diffraction data sets at 100 K from the same flash-cooled protein crystal using synchrotron X-ray radiation, photoreduction of the iron centre was observed. Reduction was monitored using an online UV-visible microspectrophotometer, following the decay of the 647 nm absorption band characteristic of the iron site in the glutamate-bound, oxidized state. Similarly to other 1Fe-SORs structurally characterized to date, the enzyme displays a tetrameric quaternary-structure arrangement. As a distinctive feature, the N-terminal loop of the protein, containing the characteristic EKHxP motif, revealed an unusually high flexibility regardless of the iron redox state. At variance with previous evidence collected by X-ray crystallography and Fourier transform infrared spectroscopy of prokaryotic SORs, iron reduction did not lead to dissociation of glutamate from the catalytic metal or other structural changes; however, the glutamate ligand underwent X-ray-induced chemical changes, revealing high sensitivity of the GiSOR active site to X-ray radiation damage.


Assuntos
Giardia lamblia/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico/efeitos da radiação , Cristalografia por Raios X , Giardia lamblia/química , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Conformação Proteica , Alinhamento de Sequência , Raios X
19.
FEBS J ; 282(22): 4307-27, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26290287

RESUMO

The DNA binding proteins from starved cells from Deinococcus radiodurans, Dps1-DR2263 and Dps2-DRB0092, have a common overall structure of hollow spherical dodecamers. Their involvement in the homeostasis of intracellular metal and DNA protection was addressed. Our results show that DrDps proteins are able to oxidize ferrous to ferric iron by oxygen or hydrogen peroxide. The iron stored inside the hollow sphere cavity is fully released. Furthermore, these proteins are able to store and release manganese, suggesting they can play a role in manganese homeostasis as well. The interaction of DrDps with DNA was also addressed. Even though DrDps1 binds both linear and coiled DNA, DrDps2 preferentially binds to coiled DNA, forming different protein-DNA complexes, as clearly shown by atomic force microscopy. DrDps1 (dimer and dodecamer) and DrDps2 can protect DNA against reactive oxygen species, although the protection occurs at different Fe to protein ratios. The difference between DrDps could be the result of the DrDps1 higher iron oxidation rate in the presence of hydrogen peroxide and its higher affinity to bind DNA than in DrDps2. Using cellular extracts obtained from D. radiodurans cultures, we showed that DrDps1 oligomers observed in in vitro conditions are also present in vivo. This indicates that DrDps1 has a structural dynamic plasticity that allows its oligomeric state to change between dimer, trimer and dodecamer. This in turn suggests the existence of a regulation mechanism that modulates the oligomer equilibrium and is dependent on growth stages and environmental conditions.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Ligação a DNA/fisiologia , Deinococcus/química , Metais/metabolismo , Proteínas de Bactérias/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Multimerização Proteica
20.
J Biol Inorg Chem ; 20(1): 155-164, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25476860

RESUMO

Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the -EKHVP- motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic Crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (-E23T24HVP-), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild-type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.


Assuntos
Proteínas Arqueais/química , Desulfurococcaceae/enzimologia , Oxirredutases/química , Superóxidos/química , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cinética , Lisina , Dados de Sequência Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA