Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Endocr Rev ; 44(4): 668-692, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-36725366

RESUMO

Mitochondria sense both biochemical and energetic input in addition to communicating signals regarding the energetic state of the cell. Increasingly, these signaling organelles are recognized as key for regulating different cell functions. This review summarizes recent advances in mitochondrial communication in striated muscle, with specific focus on the processes by which mitochondria communicate with each other, other organelles, and across distant organ systems. Intermitochondrial communication in striated muscle is mediated via conduction of the mitochondrial membrane potential to adjacent mitochondria, physical interactions, mitochondrial fusion or fission, and via nanotunnels, allowing for the exchange of proteins, mitochondrial DNA, nucleotides, and peptides. Within striated muscle cells, mitochondria-organelle communication can modulate overall cell function. The various mechanisms by which mitochondria communicate mitochondrial fitness to the rest of the body suggest that extracellular mitochondrial signaling is key during health and disease. Whereas mitochondria-derived vesicles might excrete mitochondria-derived endocrine compounds, stimulation of mitochondrial stress can lead to the release of fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) into the circulation to modulate whole-body physiology. Circulating mitochondrial DNA are well-known alarmins that trigger the immune system and may help to explain low-grade inflammation in various chronic diseases. Impaired mitochondrial function and communication are central in common heart and skeletal muscle pathologies, including cardiomyopathies, insulin resistance, and sarcopenia. Lastly, important new advances in research in mitochondrial endocrinology, communication, medical horizons, and translational aspects are discussed.


Assuntos
Mitocôndrias , Músculo Esquelético , Humanos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo
2.
Semin Cell Dev Biol ; 143: 46-53, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168898

RESUMO

The continuous dynamic reshaping of mitochondria by fusion and fission events is critical to keep mitochondrial quality and function under control in response to changes in energy and stress. Maintaining a functional, highly interconnected mitochondrial reticulum ensures rapid energy production and distribution. Moreover, mitochondrial networks act as dynamic signaling hub to adapt to the metabolic demands imposed by contraction, energy expenditure, and general metabolism. However, excessive mitochondrial fusion or fission results in the disruption of the skeletal muscle mitochondrial network integrity and activates a retrograde response from mitochondria to the nucleus, leading to muscle atrophy, weakness and influencing whole-body homeostasis. These actions are mediated via the secretion of mitochondrial-stress myokines such as FGF21 and GDF15. Here we will summarize recent discoveries in the role of mitochondrial fusion and fission in the control of muscle mass and in regulating physiological homeostasis and disease progression.


Assuntos
Mitocôndrias Musculares , Dinâmica Mitocondrial , Músculo Esquelético , Músculo Esquelético/metabolismo , Mitocôndrias Musculares/fisiologia , Humanos
3.
Nat Commun ; 12(1): 4900, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385433

RESUMO

Skeletal muscle subsarcolemmal mitochondria (SSM) and intermyofibrillar mitochondria subpopulations have distinct metabolic activity and sensitivity, though the mechanisms that localize SSM to peripheral areas of muscle fibers are poorly understood. A protein interaction study and complexome profiling identifies PERM1 interacts with the MICOS-MIB complex. Ablation of Perm1 in mice reduces muscle force, decreases mitochondrial membrane potential and complex I activity, and reduces the numbers of SSM in skeletal muscle. We demonstrate PERM1 interacts with the intracellular adaptor protein ankyrin B (ANKB) that connects the cytoskeleton to the plasma membrane. Moreover, we identify a C-terminal transmembrane helix that anchors PERM1 into the outer mitochondrial membrane. We conclude PERM1 functions in the MICOS-MIB complex and acts as an adapter to connect the mitochondria with the sarcolemma via ANKB.


Assuntos
Anquirinas/metabolismo , Mitocôndrias Musculares/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Sarcolema/metabolismo , Animais , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/fisiologia , Camundongos Knockout , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia
4.
J Pathol ; 254(3): 213-215, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33630303

RESUMO

The metabolic regulator fibroblast growth factor 21 (FGF21) has been reported as a cardioprotective factor regulating cardiac remodeling in several cardiac diseases. In a recent issue of The Journal of Pathology, Ferrer-Curriu, Guitart-Mampel et al investigated FGF21 in alcoholic cardiomyopathy (ACM). They showed that FGF21 deficiency aggravates alcohol-induced cardiac damage and dysfunction by exacerbating mitochondrial alterations, oxidative stress, and lipid metabolic dysregulation, suggesting FGF21 as a promising therapeutic agent in ACM. Paradoxically, FGF21 cardiac and circulating levels correlate with cardiac damage and oxidative stress in patients with ACM, pointing to FGF21 as a potential biomarker of alcohol-induced cardiac damage. Further studies are needed to address when FGF21 can be used as a diagnostic biomarker and when it can be used as a therapeutic agent to treat ACM. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Cardiomiopatia Alcoólica , Cardiomiopatia Alcoólica/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Estresse Oxidativo , Reino Unido
5.
Nat Commun ; 12(1): 330, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436614

RESUMO

Skeletal muscle is the protein reservoir of our body and an important regulator of glucose and lipid homeostasis. Consequently, the growth or the loss of muscle mass can influence general metabolism, locomotion, eating and respiration. Therefore, it is not surprising that excessive muscle loss is a bad prognostic index of a variety of diseases ranging from cancer, organ failure, infections and unhealthy ageing. Muscle function is influenced by different quality systems that regulate the function of contractile proteins and organelles. These systems are controlled by transcriptional dependent programs that adapt muscle cells to environmental and nutritional clues. Mechanical, oxidative, nutritional and energy stresses, as well as growth factors or cytokines modulate signaling pathways that, ultimately, converge on protein and organelle turnover. Novel insights that control and orchestrate such complex network are continuously emerging and will be summarized in this review. Understanding the mechanisms that control muscle mass will provide therapeutic targets for the treatment of muscle loss in inherited and non-hereditary diseases and for the improvement of the quality of life during ageing.


Assuntos
Doença , Saúde , Atrofia Muscular/patologia , Animais , Humanos , Hipertrofia , Desenvolvimento Muscular , Transdução de Sinais
6.
Cell Mol Life Sci ; 78(4): 1305-1328, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33078210

RESUMO

The dynamic coordination of processes controlling the quality of the mitochondrial network is crucial to maintain the function of mitochondria in skeletal muscle. Changes of mitochondrial proteolytic system, dynamics (fusion/fission), and mitophagy induce pathways that affect muscle mass and performance. When muscle mass is lost, the risk of disease onset and premature death is dramatically increased. For instance, poor quality of muscles correlates with the onset progression of several age-related disorders such as diabetes, obesity, cancer, and aging sarcopenia. To date, there are no drug therapies to reverse muscle loss, and exercise remains the best approach to improve mitochondrial health and to slow atrophy in several diseases. This review will describe the principal mechanisms that control mitochondrial quality and the pathways that link mitochondrial dysfunction to muscle mass regulation.


Assuntos
Envelhecimento/genética , Mitocôndrias/metabolismo , Mitofagia/genética , Músculo Esquelético/crescimento & desenvolvimento , Envelhecimento/patologia , Humanos , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Proteólise
7.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374852

RESUMO

Sarcopenia is a chronic disease characterized by the progressive loss of skeletal muscle mass, force, and function during aging. It is an emerging public problem associated with poor quality of life, disability, frailty, and high mortality. A decline in mitochondria quality control pathways constitutes a major mechanism driving aging sarcopenia, causing abnormal organelle accumulation over a lifetime. The resulting mitochondrial dysfunction in sarcopenic muscles feedbacks systemically by releasing the myomitokines fibroblast growth factor 21 (FGF21) and growth and differentiation factor 15 (GDF15), influencing the whole-body homeostasis and dictating healthy or unhealthy aging. This review describes the principal pathways controlling mitochondrial quality, many of which are potential therapeutic targets against muscle aging, and the connection between mitochondrial dysfunction and the myomitokines FGF21 and GDF15 in the pathogenesis of aging sarcopenia.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Renovação Mitocondrial , Sarcopenia/metabolismo , Animais , Humanos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Músculo Esquelético/metabolismo , Sarcopenia/patologia
8.
Cell Death Dis ; 11(2): 127, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071288

RESUMO

Muscular Dystrophies are severe genetic diseases due to mutations in structural genes, characterized by progressive muscle wasting that compromises patients' mobility and respiratory functions. Literature underlined oxidative stress and inflammation as key drivers of these pathologies. Interestingly among different myofiber classes, type I fibers display a milder dystrophic phenotype showing increased oxidative metabolism. This work shows the benefits of a cyanidin-enriched diet, that promotes muscle fiber-type switch and reduced inflammation in dystrophic alpha-sarcoglyan (Sgca) null mice having, as a net outcome, morphological and functional rescue. Notably, this benefit is achieved also when the diet is administered in dystrophic animals when the signs of the disease are seriously evident. Our work provides compelling evidence that a cyanidin-rich diet strongly delays the progression of muscular dystrophies, paving the way for a combinatorial approach where nutritional-based reduction of muscle inflammation and oxidative stress facilitate the successful perspectives of definitive treatments.


Assuntos
Antocianinas/administração & dosagem , Suplementos Nutricionais , Mediadores da Inflamação/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Sarcoglicanopatias/dietoterapia , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Masculino , Camundongos Knockout , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Biogênese de Organelas , Fenótipo , Carbonilação Proteica , Sarcoglicanopatias/genética , Sarcoglicanopatias/metabolismo , Sarcoglicanopatias/patologia , Sarcoglicanas/deficiência , Sarcoglicanas/genética
9.
Cells ; 9(2)2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019272

RESUMO

Polyglutamine (polyQ) expansions in the androgen receptor (AR) gene cause spinal and bulbar muscular atrophy (SBMA), a neuromuscular disease characterized by lower motor neuron (MN) loss and skeletal muscle atrophy, with an unknown mechanism. We generated new mouse models of SBMA for constitutive and inducible expression of mutant AR and performed biochemical, histological and functional analyses of phenotype. We show that polyQ-expanded AR causes motor dysfunction, premature death, IIb-to-IIa/IIx fiber-type change, glycolytic-to-oxidative fiber-type switching, upregulation of atrogenes and autophagy genes and mitochondrial dysfunction in skeletal muscle, together with signs of muscle denervation at late stage of disease. PolyQ expansions in the AR resulted in nuclear enrichment. Within the nucleus, mutant AR formed 2% sodium dodecyl sulfate (SDS)-resistant aggregates and inclusion bodies in myofibers, but not spinal cord and brainstem, in a process exacerbated by age and sex. Finally, we found that two-week induction of expression of polyQ-expanded AR in adult mice was sufficient to cause premature death, body weight loss and muscle atrophy, but not aggregation, metabolic alterations, motor coordination and fiber-type switch, indicating that expression of the disease protein in the adulthood is sufficient to recapitulate several, but not all SBMA manifestations in mice. These results imply that chronic expression of polyQ-expanded AR, i.e. during development and prepuberty, is key to induce the full SBMA muscle pathology observed in patients. Our data support a model whereby chronic expression of polyQ-expanded AR triggers muscle atrophy through toxic (neomorphic) gain of function mechanisms distinct from normal (hypermorphic) gain of function mechanisms.


Assuntos
Envelhecimento/metabolismo , Homeostase , Músculo Esquelético/metabolismo , Peptídeos/metabolismo , Receptores Androgênicos/metabolismo , Caracteres Sexuais , Animais , Agregação Celular , Denervação , Corpos de Inclusão/metabolismo , Camundongos Transgênicos , Mitocôndrias/patologia , Atividade Motora , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Atrofia Muscular Espinal/patologia , Junção Neuromuscular/patologia
11.
J Cachexia Sarcopenia Muscle ; 11(1): 208-225, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31651100

RESUMO

BACKGROUND: Skeletal muscle is a plastic tissue that can adapt to different stimuli. It is well established that Mammalian Target of Rapamycin Complex 1 (mTORC1) signalling is a key modulator in mediating increases in skeletal muscle mass and function. However, the role of mTORC1 signalling in adult skeletal muscle homeostasis is still not well defined. METHODS: Inducible, muscle-specific Raptor and mTOR k.o. mice were generated. Muscles at 1 and 7 months after deletion were analysed to assess muscle histology and muscle force. RESULTS: We found no change in muscle size or contractile properties 1 month after deletion. Prolonging deletion of Raptor to 7 months, however, leads to a very marked phenotype characterized by weakness, muscle regeneration, mitochondrial dysfunction, and autophagy impairment. Unexpectedly, reduced mTOR signalling in muscle fibres is accompanied by the appearance of markers of fibre denervation, like the increased expression of the neural cell adhesion molecule (NCAM). Both muscle-specific deletion of mTOR or Raptor, or the use of rapamycin, was sufficient to induce 3-8% of NCAM-positive fibres (P < 0.01), muscle fibrillation, and neuromuscular junction (NMJ) fragmentation in 24% of examined fibres (P < 0.001). Mechanistically, reactivation of autophagy with the small peptide Tat-beclin1 is sufficient to prevent mitochondrial dysfunction and the appearance of NCAM-positive fibres in Raptor k.o. muscles. CONCLUSIONS: Our study shows that mTOR signalling in skeletal muscle fibres is critical for maintaining proper fibre innervation, preserving the NMJ structure in both the muscle fibre and the motor neuron. In addition, considering the beneficial effects of exercise in most pathologies affecting the NMJ, our findings suggest that part of these beneficial effects of exercise are through the well-established activation of mTORC1 in skeletal muscle during and after exercise.


Assuntos
Músculo Esquelético/fisiopatologia , Junção Neuromuscular/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout
12.
Nat Commun ; 10(1): 2576, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189900

RESUMO

Mitochondrial quality control is essential in highly structured cells such as neurons and muscles. In skeletal muscle the mitochondrial fission proteins are reduced in different physiopathological conditions including ageing sarcopenia, cancer cachexia and chemotherapy-induced muscle wasting. However, whether mitochondrial fission is essential for muscle homeostasis is still unclear. Here we show that muscle-specific loss of the pro-fission dynamin related protein (DRP) 1 induces muscle wasting and weakness. Constitutive Drp1 ablation in muscles reduces growth and causes animal death while inducible deletion results in atrophy and degeneration. Drp1 deficient mitochondria are morphologically bigger and functionally abnormal. The dysfunctional mitochondria signals to the nucleus to induce the ubiquitin-proteasome system and an Unfolded Protein Response while the change of mitochondrial volume results in an increase of mitochondrial Ca2+ uptake and myofiber death. Our findings reveal that morphology of mitochondrial network is critical for several biological processes that control nuclear programs and Ca2+ handling.


Assuntos
Dinaminas/metabolismo , Mitocôndrias Musculares/patologia , Dinâmica Mitocondrial/fisiologia , Miopatias Mitocondriais/patologia , Músculo Esquelético/patologia , Animais , Cálcio/metabolismo , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Dinaminas/genética , Homeostase/fisiologia , Humanos , Camundongos , Camundongos Knockout , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/mortalidade , Músculo Esquelético/citologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitinas/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
13.
Cells ; 8(6)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208084

RESUMO

The maintenance of muscle mass and its ability to function relies on a bioenergetic efficient mitochondrial network. This network is highly impacted by fusion and fission events. We have recently shown that the acute deletion of the fusion protein Opa1 induces muscle atrophy, systemic inflammatory response, precocious epithelial senescence, and premature death that are caused by muscle-dependent secretion of FGF21. However, both fusion and fission machinery are suppressed in aging sarcopenia, cancer cachexia, and chemotherapy-induced muscle wasting. We generated inducible muscle-specific Opa1 and Drp1 double-knockout mice to address the physiological relevance of the concomitant impairment of fusion and fission machinery in skeletal muscle. Here we show that acute ablation of Opa1 and Drp1 in adult muscle causes the accumulation of abnormal and dysfunctional mitochondria, as well as the inhibition of autophagy and mitophagy pathways. This ultimately results in ER stress, muscle loss, and the reduction of force generation. However, the simultaneous inhibition of the fission protein Drp1 when Opa1 is absent alleviates FGF21 induction, oxidative stress, denervation, and inflammation rescuing the lethal phenotype of Opa1 knockout mice, despite the presence of any muscle weakness. Thus, the simultaneous inhibition of fusion and fission processes mitigates the detrimental effects of unbalanced mitochondrial fusion and prevents the secretion of pro-senescence factors.


Assuntos
Envelhecimento/patologia , GTP Fosfo-Hidrolases/metabolismo , Dinâmica Mitocondrial , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Animais , Autofagia , Dinaminas/deficiência , Dinaminas/metabolismo , Estresse do Retículo Endoplasmático , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/deficiência , Camundongos Knockout , Mitocôndrias/patologia , Mitofagia , Debilidade Muscular/complicações , Debilidade Muscular/patologia , Atrofia Muscular/complicações , Atrofia Muscular/patologia , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo
14.
Front Physiol ; 10: 419, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057418

RESUMO

Fibroblast growth factor 21 (FGF21) is a hormone that regulates important metabolic pathways. FGF21 is expressed in several metabolically active organs and interacts with different tissues. The FGF21 function is complicated and well debated due to its different sites of production and actions. Striated muscles are plastic tissues that undergo adaptive changes within their structural and functional properties in order to meet their different stresses, recently, they have been found to be an important source of FGF21. The FGF21 expression and secretion from skeletal muscles happen in both mouse and in humans during their different physiological and pathological conditions, including exercise and mitochondrial dysfunction. In this review, we will discuss the recent findings that identify FG21 as beneficial and/or detrimental cytokine interacting as an autocrine or endocrine in order to modulate cellular function, metabolism, and senescence.

15.
J Cachexia Sarcopenia Muscle ; 10(3): 630-642, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30895728

RESUMO

BACKGROUND: Skeletal muscle is a plastic tissue that adapts to changes in exercise, nutrition, and stress by secreting myokines and myometabolites. These muscle-secreted factors have autocrine, paracrine, and endocrine effects, contributing to whole body homeostasis. Muscle dysfunction in aging sarcopenia, cancer cachexia, and diabetes is tightly correlated with the disruption of the physiological homeostasis at the whole body level. The expression levels of the myokine fibroblast growth factor 21 (FGF21) are very low in normal healthy muscles. However, fasting, ER stress, mitochondrial myopathies, and metabolic disorders induce its release from muscles. Although our understanding of the systemic effects of muscle-derived FGF21 is exponentially increasing, the direct contribution of FGF21 to muscle function has not been investigated yet. METHODS: Muscle-specific FGF21 knockout mice were generated to investigate the consequences of FGF21 deletion concerning skeletal muscle mass and force. To identify the mechanisms underlying FGF21-dependent adaptations in skeletal muscle during starvation, the study was performed on muscles collected from both fed and fasted adult mice. In vivo overexpression of FGF21 was performed in skeletal muscle to assess whether FGF21 is sufficient per se to induce muscle atrophy. RESULTS: We show that FGF21 does not contribute to muscle homeostasis in basal conditions in terms of fibre type distribution, fibre size, and muscle force. In contrast, FGF21 is required for fasting-induced muscle atrophy and weakness. The mass of isolated muscles from control-fasted mice was reduced by 15-25% (P < 0.05) compared with fed control mice. FGF21-null muscles, however, were significantly protected from muscle loss and weakness during fasting. Such important protection is due to the maintenance of protein synthesis rate in knockout muscles during fasting compared with a 70% reduction in control-fasted muscles (P < 0.01), together with a significant reduction of the mitophagy flux via the regulation of the mitochondrial protein Bnip3. The contribution of FGF21 to the atrophy programme was supported by in vivo FGF21 overexpression in muscles, which was sufficient to induce autophagy and muscle loss by 15% (P < 0.05). Bnip3 inhibition protected against FGF21-dependent muscle wasting in adult animals (P < 0.05). CONCLUSIONS: FGF21 is a novel player in the regulation of muscle mass that requires the mitophagy protein Bnip3.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Mitofagia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Animais , Modelos Animais de Doenças , Jejum/efeitos adversos , Fatores de Crescimento de Fibroblastos/genética , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/citologia , Atrofia Muscular/etiologia
16.
PLoS Biol ; 16(8): e2005886, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096135

RESUMO

Circadian clocks are fundamental physiological regulators of energy homeostasis, but direct transcriptional targets of the muscle clock machinery are unknown. To understand how the muscle clock directs rhythmic metabolism, we determined genome-wide binding of the master clock regulators brain and muscle ARNT-like protein 1 (BMAL1) and REV-ERBα in murine muscles. Integrating occupancy with 24-hr gene expression and metabolomics after muscle-specific loss of BMAL1 and REV-ERBα, here we unravel novel molecular mechanisms connecting muscle clock function to daily cycles of lipid and protein metabolism. Validating BMAL1 and REV-ERBα targets using luciferase assays and in vivo rescue, we demonstrate how a major role of the muscle clock is to promote diurnal cycles of neutral lipid storage while coordinately inhibiting lipid and protein catabolism prior to awakening. This occurs by BMAL1-dependent activation of Dgat2 and REV-ERBα-dependent repression of major targets involved in lipid metabolism and protein turnover (MuRF-1, Atrogin-1). Accordingly, muscle-specific loss of BMAL1 is associated with metabolic inefficiency, impaired muscle triglyceride biosynthesis, and accumulation of bioactive lipids and amino acids. Taken together, our data provide a comprehensive overview of how genomic binding of BMAL1 and REV-ERBα is related to temporal changes in gene expression and metabolite fluctuations.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Relógios Circadianos/fisiologia , Músculo Esquelético/fisiologia , Aminoácidos/metabolismo , Aminoácidos/fisiologia , Animais , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Expressão Gênica , Homeostase , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo
17.
EMBO J ; 37(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29632021

RESUMO

Opa1 participates in inner mitochondrial membrane fusion and cristae morphogenesis. Here, we show that muscle-specific Opa1 ablation causes reduced muscle fiber size, dysfunctional mitochondria, enhanced Fgf21, and muscle inflammation characterized by NF-κB activation, and enhanced expression of pro-inflammatory genes. Chronic sodium salicylate treatment ameliorated muscle alterations and reduced the muscle expression of Fgf21. Muscle inflammation was an early event during the progression of the disease and occurred before macrophage infiltration, indicating that it is a primary response to Opa1 deficiency. Moreover, Opa1 repression in muscle cells also resulted in NF-κB activation and inflammation in the absence of necrosis and/or apoptosis, thereby revealing that the activation is a cell-autonomous process and independent of cell death. The effects of Opa1 deficiency on the expression NF-κB target genes and inflammation were absent upon mitochondrial DNA depletion. Under Opa1 deficiency, blockage or repression of TLR9 prevented NF-κB activation and inflammation. Taken together, our results reveal that Opa1 deficiency in muscle causes initial mitochondrial alterations that lead to TLR9 activation, and inflammation, which contributes to enhanced Fgf21 expression and to growth impairment.


Assuntos
DNA Mitocondrial/genética , GTP Fosfo-Hidrolases/fisiologia , Inflamação/etiologia , Músculo Esquelético/patologia , Doenças Musculares/etiologia , Receptor Toll-Like 9/metabolismo , Animais , Apoptose , Células Cultivadas , Citocinas/metabolismo , Feminino , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos Knockout , Músculo Esquelético/imunologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Necrose , Regeneração , Receptor Toll-Like 9/genética
18.
Antioxid Redox Signal ; 28(12): 1105-1119, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931313

RESUMO

AIM: Neuromuscular junction (NMJ) represents the morphofunctional interface between muscle and nerve. Several chronic pathologies such as aging and neurodegenerative diseases, including muscular dystrophy and amyotrophic lateral sclerosis, display altered NMJ and functional denervation. However, the triggers and the molecular mechanisms underlying the dismantlement of NMJ remain unclear. RESULTS: Here we provide evidence that perturbation in redox signaling cascades, induced by muscle-specific accumulation of mutant SOD1G93A in transgenic MLC/SOD1G93A mice, is causally linked to morphological alterations of the neuromuscular presynaptic terminals, high turnover rate of acetylcholine receptor, and NMJ dismantlement. The analysis of potential molecular mechanisms that mediate the toxic activity of SOD1G93A revealed a causal link between protein kinase Cθ (PKCθ) activation and NMJ disintegration. INNOVATION: The study discloses the molecular mechanism that triggers functional denervation associated with the toxic activity of muscle SOD1G93A expression and suggests the possibility of developing a new strategy to counteract age- and pathology-associated denervation based on pharmacological inhibition of PKCθ activity. CONCLUSIONS: Collectively, these data indicate that muscle-specific accumulation of oxidative damage can affect neuromuscular communication and induce NMJ dismantlement through a PKCθ-dependent mechanism. Antioxid. Redox Signal. 28, 1105-1119.


Assuntos
Junção Neuromuscular/metabolismo , Proteína Quinase C-theta/metabolismo , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos/metabolismo , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Oxirredução
19.
Autophagy ; 14(2): 311-335, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29165030

RESUMO

In yeast, Tom22, the central component of the TOMM (translocase of outer mitochondrial membrane) receptor complex, is responsible for the recognition and translocation of synthesized mitochondrial precursor proteins, and its protein kinase CK2-dependent phosphorylation is mandatory for TOMM complex biogenesis and proper mitochondrial protein import. In mammals, the biological function of protein kinase CSNK2/CK2 remains vastly elusive and it is unknown whether CSNK2-dependent phosphorylation of TOMM protein subunits has a similar role as that in yeast. To address this issue, we used a skeletal muscle-specific Csnk2b/Ck2ß-conditional knockout (cKO) mouse model. Phenotypically, these skeletal muscle Csnk2b cKO mice showed reduced muscle strength and abnormal metabolic activity of mainly oxidative muscle fibers, which point towards mitochondrial dysfunction. Enzymatically, active muscle lysates from skeletal muscle Csnk2b cKO mice phosphorylate murine TOMM22, the mammalian ortholog of yeast Tom22, to a lower extent than lysates prepared from controls. Mechanistically, CSNK2-mediated phosphorylation of TOMM22 changes its binding affinity for mitochondrial precursor proteins. However, in contrast to yeast, mitochondrial protein import seems not to be affected in vitro using mitochondria isolated from muscles of skeletal muscle Csnk2b cKO mice. PINK1, a mitochondrial health sensor that undergoes constitutive import under physiological conditions, accumulates within skeletal muscle Csnk2b cKO fibers and labels abnormal mitochondria for removal by mitophagy as demonstrated by the appearance of mitochondria-containing autophagosomes through electron microscopy. Mitophagy can be normalized by either introduction of a phosphomimetic TOMM22 mutant in cultured myotubes, or by in vivo electroporation of phosphomimetic Tomm22 into muscles of mice. Importantly, transfection of the phosphomimetic Tomm22 mutant in muscle cells with ablated Csnk2b restored their oxygen consumption rate comparable to wild-type levels. In sum, our data show that mammalian CSNK2-dependent phosphorylation of TOMM22 is a critical switch for mitophagy and reveal CSNK2-dependent physiological implications on metabolism, muscle integrity and behavior.


Assuntos
Caseína Quinase II/metabolismo , Mitocôndrias Musculares/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/enzimologia , Mitofagia/fisiologia , Músculo Esquelético/enzimologia , Animais , Autofagia , Caseína Quinase II/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mitofagia/genética , Modelos Animais , Fosforilação , Transporte Proteico , Transdução de Sinais
20.
Front Physiol ; 8: 968, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255421

RESUMO

Skeletal muscle mass is a result of the balance between protein breakdown and protein synthesis. It has been shown that multiple conditions of muscle atrophy are characterized by the common regulation of a specific set of genes, termed atrogenes. It is not known whether various models of muscle hypertrophy are similarly regulated by a common transcriptional program. Here, we characterized gene expression changes in three different conditions of muscle growth, examining each condition during acute and chronic phases. Specifically, we compared the transcriptome of Extensor Digitorum Longus (EDL) muscles collected (1) during the rapid phase of postnatal growth at 2 and 4 weeks of age, (2) 24 h or 3 weeks after constitutive activation of AKT, and (3) 24 h or 3 weeks after overload hypertrophy caused by tenotomy of the Tibialis Anterior muscle. We observed an important overlap between significantly regulated genes when comparing each single condition at the two different timepoints. Furthermore, examining the transcriptional changes occurring 24 h after a hypertrophic stimulus, we identify an important role for genes linked to a stress response, despite the absence of muscle damage in the AKT model. However, when we compared all different growth conditions, we did not find a common transcriptional fingerprint. On the other hand, all conditions showed a marked increase in mTORC1 signaling and increased ribosome biogenesis, suggesting that muscle growth is characterized more by translational, than transcriptional regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA