Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
PLoS One ; 19(6): e0298965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38829854

RESUMO

Familial Dysautonomia (FD) is a rare disease caused by ELP1 exon 20 skipping. Here we clarify the role of RNA Polymerase II (RNAPII) and chromatin on this splicing event. A slow RNAPII mutant and chromatin-modifying chemicals that reduce the rate of RNAPII elongation induce exon skipping whereas chemicals that create a more relaxed chromatin exon inclusion. In the brain of a mouse transgenic for the human FD-ELP1 we observed on this gene an age-dependent decrease in the RNAPII density profile that was most pronounced on the alternative exon, a robust increase in the repressive marks H3K27me3 and H3K9me3 and a decrease of H3K27Ac, together with a progressive reduction in ELP1 exon 20 inclusion level. In HEK 293T cells, selective drug-induced demethylation of H3K27 increased RNAPII elongation on ELP1 and SMN2, promoted the inclusion of the corresponding alternative exons, and, by RNA-sequencing analysis, induced changes in several alternative splicing events. These data suggest a co-transcriptional model of splicing regulation in which age-dependent changes in H3K27me3/Ac modify the rate of RNAPII elongation and affect processing of ELP1 alternative exon 20.


Assuntos
Processamento Alternativo , Cromatina , Disautonomia Familiar , Éxons , RNA Polimerase II , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Disautonomia Familiar/genética , Disautonomia Familiar/metabolismo , Humanos , Éxons/genética , Animais , Cromatina/metabolismo , Cromatina/genética , Camundongos , Células HEK293 , Histonas/metabolismo , Camundongos Transgênicos , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Cinética , Splicing de RNA , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
2.
Cell Death Dis ; 15(3): 208, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472212

RESUMO

Therapy of melanoma has improved dramatically over the last years thanks to the development of targeted therapies (MAPKi) and immunotherapies. However, drug resistance continues to limit the efficacy of these therapies. Our research group has provided robust evidence as to the involvement of a set of microRNAs in the development of resistance to target therapy in BRAF-mutated melanomas. Among them, a pivotal role is played by the oncosuppressor miR-579-3p. Here we show that miR-579-3p and the microphthalmia-associated transcription factor (MITF) influence reciprocally their expression through positive feedback regulatory loops. In particular we show that miR-579-3p is specifically deregulated in BRAF-mutant melanomas and that its expression levels mirror those of MITF. Luciferase and ChIP studies show that MITF is a positive regulator of miR-579-3p, which is located in the intron 11 of the human gene ZFR (Zink-finger recombinase) and is co-transcribed with its host gene. Moreover, miR-579-3p, by targeting BRAF, is able to stabilize MITF protein thus inducing its own transcription. From biological points of view, early exposure to MAPKi or, alternatively miR-579-3p transfection, induce block of proliferation and trigger senescence programs in BRAF-mutant melanoma cells. Finally, the long-term development of resistance to MAPKi is able to select cells characterized by the loss of both miR-579-3p and MITF and the same down-regulation is also present in patients relapsing after treatments. Altogether these findings suggest that miR-579-3p/MITF interplay potentially governs the balance between proliferation, senescence and resistance to therapies in BRAF-mutant melanomas.


Assuntos
Melanoma , MicroRNAs , Humanos , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Recidiva Local de Neoplasia/genética , MicroRNAs/genética , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
3.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045284

RESUMO

The 5' cap, catalyzed by RNA guanylyltransferase and 5'-phosphatase (RNGTT), is a vital mRNA modification for the functionality of mRNAs. mRNA capping occurs in the nucleus for the maturation of the functional mRNA and in the cytoplasm for fine-tuning gene expression. Given the fundamental importance of RNGTT in mRNA maturation and expression there is a need to further investigate the regulation of RNGTT. N6-methyladenosine (m6A) is one of the most abundant RNA modifications involved in the regulation of protein translation, mRNA stability, splicing, and export. We sought to investigate whether m6A could regulate the expression and activity of RNGTT. A motif for the m6A writer methyltransferase 3 (METTL3) in the 3'UTR of RNGTT mRNA was identified. Knockdown of METTL3 resulted in destabilizing RNGTT mRNA, and reduced protein expression. Sequencing of capped mRNAs identified an underrepresentation of ribosomal protein mRNA overlapping with 5' terminal oligopyrimidine (TOP) mRNAs and genes are dysregulated when cytoplasmic capping is inhibited. Pathway analysis identified disruptions in the mTOR and p70S6K pathways. A reduction in RPS6 mRNA capping, protein expression, and phosphorylation was detected with METTL3 knockdown.

4.
Front Oncol ; 13: 1255527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869089

RESUMO

Introduction: Small cell lung cancer (SCLC) is characterized by poor prognosis and challenging diagnosis. Screening in high-risk smokers results in a reduction in lung cancer mortality, however, screening efforts are primarily focused on non-small cell lung cancer (NSCLC). SCLC diagnosis and surveillance remain significant challenges. The aberrant expression of circulating microRNAs (miRNAs/miRs) is reported in many tumors and can provide insights into the pathogenesis of tumor development and progression. Here, we conducted a comprehensive assessment of circulating miRNAs in SCLC with a goal of developing a miRNA-based classifier to assist in SCLC diagnoses. Methods: We profiled deregulated circulating cell-free miRNAs in the plasma of SCLC patients. We tested selected miRNAs on a training cohort and created a classifier by integrating miRNA expression and patients' clinical data. Finally, we applied the classifier on a validation dataset. Results: We determined that miR-375-3p can discriminate between SCLC and NSCLC patients, and between SCLC and Squamous Cell Carcinoma patients. Moreover, we found that a model comprising miR-375-3p, miR-320b, and miR-144-3p can be integrated with race and age to distinguish metastatic SCLC from a control group. Discussion: This study proposes a miRNA-based biomarker classifier for SCLC that considers clinical demographics with specific cut offs to inform SCLC diagnosis.

5.
J Environ Manage ; 347: 119211, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37801946

RESUMO

Sustainable waste management presents a critical global challenge, necessitating the development of strategies for waste reduction and enhanced recycling. This study explores the impact of pay-as-you-throw tariffs (PAYTT) on promoting sustainable urban waste management. Propensity score matching was employed to analyse data from 7583 Italian municipalities. The study assesses the effects of PAYTT on both total and unsorted urban waste and evaluates their influence on the quantity and quality of separate waste collection. The findings indicate that the implementation of PAYTT effectively aligns with EU waste hierarchy policies. Municipalities adopting PAYTT experience reduced total and unsorted waste generation, along with improved quantity and quality of separate waste collections. Consequently, PAYTT holds significant potential for widespread application throughout the EU, contributing to enhanced separate waste collection efforts.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Reciclagem , Cidades , Itália , Resíduos Sólidos/análise
6.
Cell Death Discov ; 9(1): 357, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758732

RESUMO

Aging progressively modifies the physiological balance of the organism increasing susceptibility to both genetic and sporadic neurodegenerative diseases. These changes include epigenetic chromatin remodeling events that may modify the transcription levels of disease-causing genes affecting neuronal survival. However, how these events interconnect is not well understood. Here, we found that Su(var)3-9 causes increased methylation of histone H3K9 in the promoter region of TDP-43, the most frequently altered factor in amyotrophic lateral sclerosis (ALS), affecting the mRNA and protein expression levels of this gene through epigenetic modifications that appear to be conserved in aged Drosophila brains, mouse, and human cells. Remarkably, augmented Su(var)3-9 activity causes a decrease in TDP-43 expression followed by early defects in locomotor activities. In contrast, decreasing Su(var)3-9 action promotes higher levels of TDP-43 expression, improving motility parameters in old flies. The data uncover a novel role of this enzyme in regulating TDP-43 expression and locomotor senescence and indicate conserved epigenetic mechanisms that may play a role in the pathogenesis of ALS.

7.
Genes (Basel) ; 14(5)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37239435

RESUMO

miRNAs are some of the most well-characterized regulators of gene expression. Integral to several physiological processes, their aberrant expression often drives the pathogenesis of both benign and malignant diseases. Similarly, DNA methylation represents an epigenetic modification influencing transcription and playing a critical role in silencing numerous genes. The silencing of tumor suppressor genes through DNA methylation has been reported in many types of cancer and is associated with tumor development and progression. A growing body of literature has described the crosstalk between DNA methylation and miRNAs as an additional layer in the regulation of gene expression. Methylation in miRNA promoter regions inhibits its transcription, while miRNAs can target transcripts and subsequently regulate the proteins responsible for DNA methylation. Such relationships between miRNA and DNA methylation serve an important regulatory role in several tumor types and highlight a novel avenue for potential therapeutic targets. In this review, we discuss the crosstalk between DNA methylation and miRNA expression in the pathogenesis of cancer and describe how miRNAs influence DNA methylation and, conversely, how methylation impacts the expression of miRNAs. Finally, we address how these epigenetic modifications may be leveraged as biomarkers in cancer.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Metilação de DNA/genética , Neoplasias/genética , Epigênese Genética/genética , Inativação Gênica
8.
Oncogene ; 42(19): 1597-1606, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37002315

RESUMO

Non-small cell lung cancer (NSCLC) patients carrying an epidermal growth factor receptor (EGFR) mutation have an initial favorable clinical response to the tyrosine kinase inhibitors (TKIs). Unfortunately, rapid resistance occurs mainly because of genetic alterations, including amplification of the hepatocyte growth factor receptor (MET) and its abnormal activity. The RNA post-transcriptional modifications that contribute to aberrant expression of MET in cancer are largely under-investigated and among them is the adenosine-to-inosine (A-to-I) RNA editing of microRNAs. A reduction of A-to-I editing in position 5 of miR-411-5p has been identified in several cancers, including NSCLC. In this study, thanks to cancer-associated gene expression analysis, we assessed the effect of the edited miR-411-5p on NSCLC cell lines. We found that edited miR-411-5p directly targets MET and negatively affects the mitogen-activated protein kinases (MAPKs) pathway. Considering the predominant role of the MAPKs pathway on TKIs resistance, we generated NSCLC EGFR mutated cell lines resistant to TK inhibitors and evaluated the effect of edited miR-411-5p overexpression. We found that the edited miR-411-5p reduces proliferation and induces apoptosis, promoting EGFR TKIs response in NSCLC-resistant cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
9.
Genes (Basel) ; 13(11)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421832

RESUMO

Lung and breast cancer are the two most common causes of malignant pleural effusion (MPE). MPE diagnosis plays a crucial role in determining staging and therapeutic interventions in these cancers. However, our understanding of the pathogenesis and progression of MPE at the molecular level is limited. Extracellular Vesicles (EVs) and their contents, including microRNAs (miRNAs), can be isolated from all bodily fluids, including pleural fluid. This study aims to compare EV-miRNA patterns of expression in MPE caused by breast (BA-MPE) and lung (LA-MPE) adenocarcinomas compared to the control group of heart-failure-induced effusions (HF-PE). We conducted an analysis of 24 pleural fluid samples (8 LA-MPE, 8 BA-MPE, and 8 HF-PE). Using NanoString technology, we profiled miRNAs within EVs isolated from 12 cases. Bioinformatic analysis demonstrated differential expression of miR-1246 in the MPE group vs. HF-PE group and miR-150-5p and miR-1246 in the BA-MPE vs. LA-MPE group, respectively. This difference was demonstrated and validated in an independent cohort using real-time PCR (RT-PCR). miRNA-1246 demonstrated 4-fold increased expression (OR: 3.87, 95% CI: 0.43, 35) in the MPE vs. HF-PE group, resulting in an area under the curve of 0.80 (95% CI: 0.60, 0.99). The highest accuracy for differentiating MPE vs. HF-PE was seen with a combination of miRNAs compared to each miRNA alone. Consistent with prior studies, this study demonstrates dysregulation of specific EV-based miRNAs in breast and lung cancer; pleural fluid provides direct access for the analysis of these EV-miRNAs as biomarkers and potential targets and may provide insight into the underlying pathogenesis of tumor progression. These findings should be explored in large prospective studies.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Derrame Pleural Maligno , Humanos , Derrame Pleural Maligno/genética , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estudos Prospectivos , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo
12.
Genes (Basel) ; 13(7)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35886072

RESUMO

The epitranscriptome encompasses all post-transcriptional modifications that occur on RNAs. These modifications can alter the function and regulation of their RNA targets, which, if dysregulated, result in various diseases and cancers. As with other RNAs, miRNAs are highly modified by epitranscriptomic modifications such as m6A methylation, 2'-O-methylation, m5C methylation, m7G methylation, polyuridine, and A-to-I editing. miRNAs are a class of small non-coding RNAs that regulates gene expression at the post-transcriptional level. miRNAs have gathered high clinical interest due to their role in disease, development, and cancer progression. Epitranscriptomic modifications alter the targeting, regulation, and biogenesis of miRNAs, increasing the complexity of miRNA regulation. In addition, emerging studies have revealed crosstalk between these modifications. In this review, we will summarize the epitranscriptomic modifications-focusing on those relevant to miRNAs-examine the recent crosstalk between these modifications, and give a perspective on how this crosstalk expands the complexity of miRNA biology.


Assuntos
MicroRNAs , Neoplasias , Humanos , Metilação , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Processamento Pós-Transcricional do RNA/genética
13.
Am J Hum Genet ; 109(8): 1534-1548, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35905737

RESUMO

Familial dysautonomia (FD) is a currently untreatable, neurodegenerative disease caused by a splicing mutation (c.2204+6T>C) that causes skipping of exon 20 of the elongator complex protein 1 (ELP1) pre-mRNA. Here, we used adeno-associated virus serotype 9 (AAV9-U1-FD) to deliver an exon-specific U1 (ExSpeU1) small nuclear RNA, designed to cause inclusion of ELP1 exon 20 only in those cells expressing the target pre-mRNA, in a phenotypic mouse model of FD. Postnatal systemic and intracerebral ventricular treatment in these mice increased the inclusion of ELP1 exon 20. This also augmented the production of functional protein in several tissues including brain, dorsal root, and trigeminal ganglia. Crucially, the treatment rescued most of the FD mouse mortality before one month of age (89% vs 52%). There were notable improvements in ataxic gait as well as renal (serum creatinine) and cardiac (ejection fraction) functions. RNA-seq analyses of dorsal root ganglia from treated mice and human cells overexpressing FD-ExSpeU1 revealed only minimal global changes in gene expression and splicing. Overall then, our data prove that AAV9-U1-FD is highly specific and will likely be a safe and effective therapeutic strategy for this debilitating disease.


Assuntos
Disautonomia Familiar , Doenças Neurodegenerativas , Animais , Modelos Animais de Doenças , Disautonomia Familiar/genética , Éxons/genética , Humanos , Camundongos , Doenças Neurodegenerativas/genética , Precursores de RNA/genética , Splicing de RNA/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo
15.
Cancers (Basel) ; 14(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35159038

RESUMO

Despite the development of targeted therapeutics, immunotherapy, and strategies for early detection, lung cancer carries a high mortality. Further, significant racial disparities in outcomes exist for which the molecular drivers have yet to be fully elucidated. The growing field of Epitranscriptomics has introduced a new layer of complexity to the molecular pathogenesis of cancer. RNA modifications can occur in coding and non-coding RNAs, such as miRNAs, possibly altering their gene regulatory function. The potential role for such modifications as clinically informative biomarkers remains largely unknown. Here, we concurrently profiled canonical miRNAs, shifted isomiRs (templated and non-templated), and miRNAs with single-point modification events (RNA and DNA) in White American (W) and Black or African American (B/AA) lung adenocarcinoma (LUAD) patients. We found that while most deregulated miRNA isoforms were similar in W and B/AA LUAD tissues compared to normal adjacent tissues, there was a subgroup of isoforms with deregulation according to race. We specifically investigated an edited miRNA, miR-151a-3p with an A-to-I editing event at position 3, to determine how its altered expression may be associated with activation of divergent biological pathways between W and B/AA LUAD patients. Finally, we identified distinct race-specific miRNA isoforms that correlated with prognosis for both Ws and B/AAs. Our results suggested that concurrently profiling canonical and non-canonical miRNAs may have potential as a strategy for identifying additional distinct biological pathways and biomarkers in lung cancer.

16.
Waste Manag ; 139: 217-226, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34974316

RESUMO

This paper investigates the factors affecting Italian provinces' separate collection rates from 2007 to 2016, as these rates are relevant environmental performance indicators in urban waste management. We observe data spanning this decade from 103 Italian provinces and use panel data regressions to explore if and how some relevant socio-economic factors-including convictions for crimes committed against the public administration and many indicators of equitable and sustainable well-being that describe the quality of life in Italy-significantly affect provinces' capability to reach European and national regulators' separate collection rate targets. The results reveal that the greater the prosecuted crime committed against the public administration, average income, expected age, number of people with a diploma or a degree, and the percentage of female municipal administrators, the greater the separate waste collection rate. In contrast, the greater the number of household members, youth employment rate, total waste produced per capita, and the recourse for landfills, the lower the separate waste collection rate. These results highlight for policy-makers and waste utility managers the need to implement different strategies to increase the ability to meet expected targets and increase environmental performance, and thus, further increasing the quality of life.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Adolescente , Cidades , Feminino , Humanos , Itália , Qualidade de Vida , Resíduos Sólidos/análise
17.
Cancers (Basel) ; 13(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830787

RESUMO

Extracellular vesicles (EVs) are heterogenous membrane-encapsulated vesicles secreted by every cell into the extracellular environment. EVs carry bioactive molecules, including proteins, lipids, DNA, and different RNA forms, which can be internalized by recipient cells, thus altering their biological characteristics. Given that EVs are commonly found in most body fluids, they have been widely described as mediators of communication in several physiological and pathological processes, including cancer. Moreover, their easy detection in biofluids makes them potentially useful candidates as tumor biomarkers. In this manuscript, we review the current knowledge regarding EVs and non-coding RNAs and their role as drivers of the metastatic process in lung cancer. Furthermore, we present the most recent applications for EVs and non-coding RNAs as cancer therapeutics and their relevance as clinical biomarkers.

18.
Sci Rep ; 11(1): 18761, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548578

RESUMO

Alterations in the function of the RNA-binding protein TDP-43 are largely associated with the pathogenesis of amyotrophic lateral sclerosis (ALS), a devastating disease of the human motor system that leads to motoneurons degeneration and reduced life expectancy by molecular mechanisms not well known. In our previous work, we found that the expression levels of the glutamic acid decarboxylase enzyme (GAD1), responsible for converting glutamate to γ-aminobutyric acid (GABA), were downregulated in TBPH-null flies and motoneurons derived from ALS patients carrying mutations in TDP-43, suggesting that defects in the regulation of GAD1 may lead to neurodegeneration by affecting neurotransmitter balance. In this study, we observed that TBPH was required for the regulation of GAD1 pre-mRNA splicing and the levels of GABA in the Drosophila central nervous system (CNS). Interestingly, we discovered that pharmacological treatments aimed to potentiate GABA neurotransmission were able to revert locomotion deficiencies in TBPH-minus flies, revealing novel mechanisms and therapeutic strategies in ALS.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Glutamato Descarboxilase/genética , Splicing de RNA , RNA Mensageiro/genética , Transdução de Sinais/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila , Proteínas de Drosophila/genética , Técnicas de Silenciamento de Genes , Locomoção
19.
Sci Data ; 8(1): 199, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349127

RESUMO

MicroRNAs (miRNAs) are regulatory small non-coding RNAs that function as translational repressors. MiRNAs are involved in most cellular processes, and their expression and function are presided by several factors. Amongst, miRNA editing is an epitranscriptional modification that alters the original nucleotide sequence of selected miRNAs, possibly influencing their biogenesis and target-binding ability. A-to-I and C-to-U RNA editing are recognized as the canonical types, with the A-to-I type being the predominant one. Albeit some bioinformatics resources have been implemented to collect RNA editing data, it still lacks a comprehensive resource explicitly dedicated to miRNA editing. Here, we present MiREDiBase, a manually curated catalog of editing events in miRNAs. The current version includes 3,059 unique validated and putative editing sites from 626 pre-miRNAs in humans and three primates. Editing events in mature human miRNAs are supplied with miRNA-target predictions and enrichment analysis, while minimum free energy structures are inferred for edited pre-miRNAs. MiREDiBase represents a valuable tool for cell biology and biomedical research and will be continuously updated and expanded at https://ncrnaome.osumc.edu/miredibase .


Assuntos
Bases de Dados de Ácidos Nucleicos , MicroRNAs/genética , Edição de RNA , Animais , Gorilla gorilla , Humanos , Macaca mulatta , Pan troglodytes
20.
Cancers (Basel) ; 13(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810332

RESUMO

In the last 20 years, the functional roles for miRNAs in gene regulation have been well established. MiRNAs act as regulators in virtually all biological pathways and thus have been implicated in numerous diseases, including cancer. They are particularly relevant in regulating the basic hallmarks of cancer, including apoptosis, proliferation, migration, and invasion. Despite the substantial progress made in identifying the molecular mechanisms driving the deregulation of miRNAs in cancer, the clinical translation of these important molecules to therapy remains in its infancy. The paucity of vehicles available for the safe and efficient delivery of miRNAs and ongoing concerns for toxicity remain major obstacles to clinical application. Novel formulations and the development of new vectors have significantly improved the stability of oligonucleotides, increasing the effectiveness of therapy. Furthermore, the use of specific moieties for delivery in target tissues or cells has increased the specificity of treatment. The use of new technologies has allowed small but important steps toward more specific therapeutic delivery in tumor tissues and cells. Although a long road remains, the path ahead holds great potential. Currently, a few miRNA drugs are under investigation in human clinical trials with promising results ahead.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA