Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2757: 103-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668963

RESUMO

Placozoans are morphologically the simplest free-living animals. They represent a unique window of opportunities to understand both the origin of the animal organization and the rules of life for the system and synthetic biology of the future. However, despite more than 100 years of their investigations, we know little about their organization, natural habitats, and life strategies. Here, we introduce this unique animal phylum and highlight some directions vital to broadening the frontiers of the biomedical sciences. In particular, understanding the genomic bases of placozoan biodiversity, cell identity, connectivity, reproduction, and cellular bases of behavior are critical hot spots for future studies.


Assuntos
Placozoa , Animais , Placozoa/genética , Biodiversidade , Filogenia , Genoma , Genômica/métodos , Reprodução , Ecossistema
2.
Methods Mol Biol ; 2757: 509-529, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668981

RESUMO

The phylum Placozoa remains one of the least explored among early-branching metazoan lineages. For over 130 years, this phylum had been represented by the single species Trichoplax adhaerens-an animal with the simplest known body plan (three cell layers without any organs) but complex behaviors. Recently, extensive sampling of placozoans across the globe and their subsequent genetic analysis have revealed incredible biodiversity with numerous cryptic species worldwide. However, only a few culture protocols are available to date, and all are for one species only. Here, we describe the breeding of four different species representing two placozoan genera: Trichoplax adhaerens, Trichoplax sp. H2, Hoilungia sp. H4, and Hoilungia hongkongensis originating from diverse biotopes. Our protocols allow to culture all species under comparable conditions. Next, we outlined various food sources and optimized strain-specific parameters enabling long-term culturing. These protocols can facilitate comparative analyses of placozoan biology and behaviors, which together will contribute to deciphering general principles of animal organization.


Assuntos
Placozoa , Animais , Placozoa/genética
3.
Methods Mol Biol ; 2757: 383-445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668977

RESUMO

The emergence and development of single-cell RNA sequencing (scRNA-seq) techniques enable researchers to perform large-scale analysis of the transcriptomic profiling at cell-specific resolution. Unsupervised clustering of scRNA-seq data is central for most studies, which is essential to identify novel cell types and their gene expression logics. Although an increasing number of algorithms and tools are available for scRNA-seq analysis, a practical guide for users to navigate the landscape remains underrepresented. This chapter presents an overview of the scRNA-seq data analysis pipeline, quality control, batch effect correction, data standardization, cell clustering and visualization, cluster correlation analysis, and marker gene identification. Taking the two broadly used analysis packages, i.e., Scanpy and MetaCell, as examples, we provide a hands-on guideline and comparison regarding the best practices for the above essential analysis steps and data visualization. Additionally, we compare both packages and algorithms using a scRNA-seq dataset of the ctenophore Mnemiopsis leidyi, which is representative of one of the earliest animal lineages, critical to understanding the origin and evolution of animal novelties. This pipeline can also be helpful for analyses of other taxa, especially prebilaterian animals, where these tools are under development (e.g., placozoan and Porifera).


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Análise de Célula Única , Software , Análise de Célula Única/métodos , Animais , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos , Análise por Conglomerados , Transcriptoma/genética
4.
Methods Mol Biol ; 2757: 531-581, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668982

RESUMO

Experimental discovery of neuropeptides and peptide hormones is a long and tedious task. Mining the genomic and transcriptomic sequence data with robust secretory peptide prediction tools can significantly facilitate subsequent experiments. We describe the application of various in silico neuropeptide discovery methods for the placozoan Trichopax adhaerens as an illustrated example and a powerful experimental paradigm for cellular and evolutionary biology. In total, 33 placozoan (neuro)peptide-like hormone precursors were found using homology-based BLAST search and repeat-based and comparative evolutionary methods. Some of the discovered precursors are homologous to insulins and RFamide precursors from Cnidaria and other animal phyla.


Assuntos
Biologia Computacional , Neuropeptídeos , Placozoa , Animais , Biologia Computacional/métodos , Placozoa/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Filogenia , Evolução Molecular
5.
Front Cell Dev Biol ; 12: 1346032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516131

RESUMO

Omnipresent gravity affects all living organisms; it was a vital factor in the past and the current bottleneck for future space exploration. However, little is known about the evolution of gravity sensing and the comparative biology of gravity reception. Here, by tracing the parallel evolution of gravity sensing, we encounter situations when assemblies of homologous modules result in the emergence of non-homologous structures with similar systemic properties. This is a perfect example to study homoplasy at all levels of biological organization. Apart from numerous practical implementations for bioengineering and astrobiology, the diversity of gravity signaling presents unique reference paradigms to understand hierarchical homology transitions to the convergent evolution of integrative systems. Second, by comparing gravisensory systems in major superclades of basal metazoans (ctenophores, sponges, placozoans, cnidarians, and bilaterians), we illuminate parallel evolution and alternative solutions implemented by basal metazoans toward spatial orientation, focusing on gravitational sensitivity and locomotory integrative systems.

6.
Anim Cogn ; 26(6): 1851-1864, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38015282

RESUMO

Neurons underpin cognition in animals. However, the roots of animal cognition are elusive from both mechanistic and evolutionary standpoints. Two conceptual frameworks both highlight and promise to address these challenges. First, we discuss evidence that animal neural and other integrative systems evolved more than once (convergent evolution) within basal metazoan lineages, giving us unique experiments by Nature for future studies. The most remarkable examples are neural systems in ctenophores and neuroid-like systems in placozoans and sponges. Second, in addition to classical synaptic wiring, a chemical connectome mediated by hundreds of signal molecules operates in tandem with neurons and is the most information-rich source of emerging properties and adaptability. The major gap-dynamic, multifunctional chemical micro-environments in nervous systems-is not understood well. Thus, novel tools and information are needed to establish mechanistic links between orchestrated, yet cell-specific, volume transmission and behaviors. Uniting what we call chemoconnectomics and analyses of the cellular bases of behavior in basal metazoan lineages arguably would form the foundation for deciphering the origins and early evolution of elementary cognition and intelligence.


Assuntos
Ctenóforos , Animais , Ctenóforos/fisiologia , Sistema Nervoso , Neurônios/fisiologia , Cognição , Evolução Biológica
7.
Front Neurosci ; 17: 1125624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123368

RESUMO

Placozoans are the simplest known free-living animals without recognized neurons and muscles but a complex behavioral repertoire. However, mechanisms and cellular bases of behavioral coordination are unknown. Here, using Trichoplax adhaerens as a model, we described 0.02-0.002 Hz oscillations in locomotory and feeding patterns as evidence of complex multicellular integration; and showed their dependence on the endogenous secretion of signal molecules. Evolutionary conserved low-molecular-weight transmitters (glutamate, aspartate, glycine, GABA, and ATP) acted as coordinators of distinct locomotory and feeding patterns. Specifically, L-glutamate induced and partially mimicked endogenous feeding cycles, whereas glycine and GABA suppressed feeding. ATP-modified feeding is complex, first causing feeding-like cycles and then suppressing feeding. Trichoplax locomotion was modulated by glycine, GABA, and, surprisingly, by animals' own mucus trails. Mucus triples locomotory speed compared to clean substrates. Glycine and GABA increased the frequency of turns. The effects of the amino acids are likely mediated by numerous receptors (R), including those from ionotropic GluRs, metabotropic GluRs, and GABA-BR families. Eighty-five of these receptors are encoded in the Trichoplax genome, more than in any other animal sequenced. Phylogenetic reconstructions illuminate massive lineage-specific expansions of amino acid receptors in Placozoa, Cnidaria, and Porifera and parallel evolution of nutritional sensing. Furthermore, we view the integration of feeding behaviors in nerveless animals by amino acids as ancestral exaptations that pave the way for co-options of glutamate, glycine, GABA, and ATP as classical neurotransmitters in eumetazoans.

8.
Front Neurosci ; 17: 1125433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034176

RESUMO

Nitric oxide (NO) is one of the most ancient and versatile signal molecules across all domains of life. NO signaling might also play an essential role in the origin of animal organization. Yet, practically nothing is known about the distribution and functions of NO-dependent signaling pathways in representatives of early branching metazoans such as Ctenophora. Here, we explore the presence and organization of NO signaling components using Mnemiopsis and kin as essential reference species. We show that NO synthase (NOS) is present in at least eight ctenophore species, including Euplokamis and Coeloplana, representing the most basal ctenophore lineages. However, NOS could be secondarily lost in many other ctenophores, including Pleurobrachia and Beroe. In Mnemiopsis leidyi, NOS is present both in adult tissues and differentially expressed in later embryonic stages suggesting the involvement of NO in developmental mechanisms. Ctenophores also possess soluble guanylyl cyclases as potential NO receptors with weak but differential expression across tissues. Combined, these data indicate that the canonical NO-cGMP signaling pathways existed in the common ancestor of animals and could be involved in the control of morphogenesis, cilia activities, feeding and different behaviors.

10.
Front Cell Dev Biol ; 10: 823283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223848

RESUMO

Placozoans are essential reference species for understanding the origins and evolution of animal organization. However, little is known about their life strategies in natural habitats. Here, by maintaining long-term culturing for four species of Trichoplax and Hoilungia, we extend our knowledge about feeding and reproductive adaptations relevant to the diversity of life forms and immune mechanisms. Three modes of population dynamics depended upon feeding sources, including induction of social behaviors, morphogenesis, and reproductive strategies. In addition to fission, representatives of all species produced "swarmers" (a separate vegetative reproduction stage), which could also be formed from the lower epithelium with greater cell-type diversity. We monitored the formation of specialized spheroid structures from the upper cell layer in aging culture. These "spheres" could be transformed into juvenile animals under favorable conditions. We hypothesize that spheroid structures represent a component of the innate immune defense response with the involvement of fiber cells. Finally, we showed that regeneration could be a part of the adaptive reproductive strategies in placozoans and a unique experimental model for regenerative biology.

11.
Front Cell Dev Biol ; 10: 1071961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619868

RESUMO

How to make a neuron, a synapse, and a neural circuit? Is there only one 'design' for a neural architecture with a universally shared genomic blueprint across species? The brief answer is "No." Four early divergent lineages from the nerveless common ancestor of all animals independently evolved distinct neuroid-type integrative systems. One of these is a subset of neural nets in comb jellies with unique synapses; the second lineage is the well-known Cnidaria + Bilateria; the two others are non-synaptic neuroid systems in sponges and placozoans. By integrating scRNA-seq and microscopy data, we revise the definition of neurons as synaptically-coupled polarized and highly heterogenous secretory cells at the top of behavioral hierarchies with learning capabilities. This physiological (not phylogenetic) definition separates 'true' neurons from non-synaptically and gap junction-coupled integrative systems executing more stereotyped behaviors. Growing evidence supports the hypothesis of multiple origins of neurons and synapses. Thus, many non-bilaterian and bilaterian neuronal classes, circuits or systems are considered functional rather than genetic categories, composed of non-homologous cell types. In summary, little-explored examples of convergent neuronal evolution in representatives of early branching metazoans provide conceptually novel microanatomical and physiological architectures of behavioral controls in animals with prospects of neuro-engineering and synthetic biology.

12.
Front Cell Dev Biol ; 9: 726563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490275
13.
Neuropharmacology ; 199: 108740, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34343611

RESUMO

Glutamate (Glu) is the primary excitatory transmitter in the mammalian brain. But, we know little about the evolutionary history of this adaptation, including the selection of l-glutamate as a signaling molecule in the first place. Here, we used comparative metabolomics and genomic data to reconstruct the genealogy of glutamatergic signaling. The origin of Glu-mediated communications might be traced to primordial nitrogen and carbon metabolic pathways. The versatile chemistry of L-Glu placed this molecule at the crossroad of cellular biochemistry as one of the most abundant metabolites. From there, innovations multiplied. Many stress factors or injuries could increase extracellular glutamate concentration, which led to the development of modular molecular systems for its rapid sensing in bacteria and archaea. More than 20 evolutionarily distinct families of ionotropic glutamate receptors (iGluRs) have been identified in eukaryotes. The domain compositions of iGluRs correlate with the origins of multicellularity in eukaryotes. Although L-Glu was recruited as a neuro-muscular transmitter in the early-branching metazoans, it was predominantly a non-neuronal messenger, with a possibility that glutamatergic synapses evolved more than once. Furthermore, the molecular secretory complexity of glutamatergic synapses in invertebrates (e.g., Aplysia) can exceed their vertebrate counterparts. Comparative genomics also revealed 15+ subfamilies of iGluRs across Metazoa. However, most of this ancestral diversity had been lost in the vertebrate lineage, preserving AMPA, Kainate, Delta, and NMDA receptors. The widespread expansion of glutamate synapses in the cortical areas might be associated with the enhanced metabolic demands of the complex brain and compartmentalization of Glu signaling within modular neuronal ensembles.


Assuntos
Evolução Biológica , Ácido Glutâmico/fisiologia , Receptores de Glutamato/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Animais
14.
Sci Adv ; 7(26)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34162536

RESUMO

The American lobster, Homarus americanus, is integral to marine ecosystems and supports an important commercial fishery. This iconic species also serves as a valuable model for deciphering neural networks controlling rhythmic motor patterns and olfaction. Here, we report a high-quality draft assembly of the H. americanus genome with 25,284 predicted gene models. Analysis of the neural gene complement revealed extraordinary development of the chemosensory machinery, including a profound diversification of ligand-gated ion channels and secretory molecules. The discovery of a novel class of chimeric receptors coupling pattern recognition and neurotransmitter binding suggests a deep integration between the neural and immune systems. A robust repertoire of genes involved in innate immunity, genome stability, cell survival, chemical defense, and cuticle formation represents a diversity of defense mechanisms essential to thrive in the benthic marine environment. Together, these unique evolutionary adaptations contribute to the longevity and ecological success of this long-lived benthic predator.


Assuntos
Longevidade , Nephropidae , Animais , Ecossistema , Longevidade/genética , Nephropidae/genética , Nephropidae/metabolismo , Sistema Nervoso
15.
Cell Tissue Res ; 385(3): 623-637, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33876313

RESUMO

From a morphological point of view, placozoans are among the most simple free-living animals. This enigmatic phylum is critical for our understanding of the evolution of animals and their cell types. Their millimeter-sized, disc-like bodies consist of only three cell layers that are shaped by roughly seven major cell types. Placozoans lack muscle cells and neurons but are able to move using their ciliated lower surface and take up food in a highly coordinated manner. Intriguingly, the genome of Trichoplax adhaerens, the founding member of the enigmatic phylum, has disclosed a surprising level of genetic complexity. Moreover, recent molecular and functional investigations have uncovered a much larger, so-far hidden cell-type diversity. Here, we have extended the microanatomical characterization of a recently described placozoan species-Hoilungia hongkongensis. In H. hongkongensis, we recognized the established canonical three-layered placozoan body plan but also came across several morphologically distinct and potentially novel cell types, among them novel gland cells and "shiny spheres"-bearing cells at the upper epithelium. Thus, the diversity of cell types in placozoans is indeed higher than anticipated.


Assuntos
Filogenia , Placozoa/ultraestrutura , Animais
16.
Sci Rep ; 11(1): 5478, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750901

RESUMO

ATP and its ionotropic P2X receptors are components of the most ancient signaling system. However, little is known about the distribution and function of purinergic transmission in invertebrates. Here, we cloned, expressed, and pharmacologically characterized the P2X receptors in the sea slug Aplysia californica-a prominent neuroscience model. AcP2X receptors were successfully expressed in Xenopus oocytes and displayed activation by ATP with two-phased kinetics and Na+-dependence. Pharmacologically, they were different from other P2X receptors. The ATP analog, Bz-ATP, was a less effective agonist than ATP, and PPADS was a more potent inhibitor of the AcP2X receptors than the suramin. AcP2X were uniquely expressed within the cerebral F-cluster, the multifunctional integrative neurosecretory center. AcP2X receptors were also detected in the chemosensory structures and the early cleavage stages. Therefore, in molluscs, rapid ATP-dependent signaling can be implicated both in development and diverse homeostatic functions. Furthermore, this study illuminates novel cellular and systemic features of P2X-type ligand-gated ion channels for deciphering the evolution of neurotransmitters.


Assuntos
Trifosfato de Adenosina/metabolismo , Aplysia/metabolismo , Transdução de Sinais , Animais , Aplysia/citologia , Aplysia/genética , Modelos Moleculares , Neurônios/citologia , Neurônios/metabolismo , Filogenia , Receptores Purinérgicos P2X/análise , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/metabolismo , Xenopus
17.
Philos Trans R Soc Lond B Biol Sci ; 376(1821): 20190762, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33550949

RESUMO

Transmitter signalling is the universal chemical language of any nervous system, but little is known about its early evolution. Here, we summarize data about the distribution and functions of neurotransmitter systems in basal metazoans as well as outline hypotheses of their origins. We explore the scenario that neurons arose from genetically different populations of secretory cells capable of volume chemical transmission and integration of behaviours without canonical synapses. The closest representation of this primordial organization is currently found in Placozoa, disk-like animals with the simplest known cell composition but complex behaviours. We propose that injury-related signalling was the evolutionary predecessor for integrative functions of early transmitters such as nitric oxide, ATP, protons, glutamate and small peptides. By contrast, acetylcholine, dopamine, noradrenaline, octopamine, serotonin and histamine were recruited as canonical neurotransmitters relatively later in animal evolution, only in bilaterians. Ligand-gated ion channels often preceded the establishment of novel neurotransmitter systems. Moreover, lineage-specific diversification of neurotransmitter receptors occurred in parallel within Cnidaria and several bilaterian lineages, including acoels. In summary, ancestral diversification of secretory signal molecules provides unique chemical microenvironments for behaviour-driven innovations that pave the way to complex brain functions and elementary cognition. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.


Assuntos
Comunicação Celular/fisiologia , Evolução Molecular , Neurotransmissores/química , Transdução de Sinais , Animais , Placozoa/fisiologia
18.
Biochem Biophys Res Commun ; 532(1): 120-126, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32828537

RESUMO

Placozoa are small disc-shaped animals, representing the simplest known, possibly ancestral, organization of free-living animals. With only six morphological distinct cell types, without any recognized neurons or muscle, placozoans exhibit fast effector reactions and complex behaviors. However, little is known about electrogenic mechanisms in these animals. Here, we showed the presence of rapid action potentials in four species of placozoans (Trichoplax adhaerens [H1 haplotype], Trichoplax sp.[H2], Hoilungia hongkongensis [H13], and Hoilungia sp. [H4]). These action potentials are sodium-dependent and can be inducible. The molecular analysis suggests the presence of 5-7 different types of voltage-gated sodium channels, which showed substantial evolutionary radiation compared to many other metazoans. Such unexpected diversity of sodium channels in early-branched metazoan lineages reflect both duplication events and parallel evolution of unique behavioral integration in these nerveless animals.


Assuntos
Placozoa/metabolismo , Canais de Sódio/metabolismo , Sódio/metabolismo , Potenciais de Ação , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Evolução Molecular , Variação Genética , Modelos Moleculares , Filogenia , Placozoa/classificação , Placozoa/genética , Conformação Proteica , Canais de Sódio/química , Canais de Sódio/genética
19.
Sci Rep ; 10(1): 13020, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747709

RESUMO

Nitric oxide (NO) is a ubiquitous gaseous messenger, but we know little about its early evolution. Here, we analyzed NO synthases (NOS) in four different species of placozoans-one of the early-branching animal lineages. In contrast to other invertebrates studied, Trichoplax and Hoilungia have three distinct NOS genes, including PDZ domain-containing NOS. Using ultra-sensitive capillary electrophoresis assays, we quantified nitrites (products of NO oxidation) and L-citrulline (co-product of NO synthesis from L-arginine), which were affected by NOS inhibitors confirming the presence of functional enzymes in Trichoplax. Using fluorescent single-molecule in situ hybridization, we showed that distinct NOSs are expressed in different subpopulations of cells, with a noticeable distribution close to the edge regions of Trichoplax. These data suggest both the compartmentalized release of NO and a greater diversity of cell types in placozoans than anticipated. NO receptor machinery includes both canonical and novel NIT-domain containing soluble guanylate cyclases as putative NO/nitrite/nitrate sensors. Thus, although Trichoplax and Hoilungia exemplify the morphologically simplest free-living animals, the complexity of NO-cGMP-mediated signaling in Placozoa is greater to those in vertebrates. This situation illuminates multiple lineage-specific diversifications of NOSs and NO/nitrite/nitrate sensors from the common ancestor of Metazoa and the preservation of conservative NOS architecture from prokaryotic ancestors.


Assuntos
Evolução Biológica , Gases/metabolismo , Óxido Nítrico/metabolismo , Placozoa/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Óxido Nítrico Sintase/química , Óxido Nítrico Sintase/metabolismo , Placozoa/genética , Homologia de Sequência de Aminoácidos
20.
Biochem Biophys Res Commun ; 527(4): 947-952, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32439167

RESUMO

D-amino acids are unique and essential signaling molecules in neural, hormonal, and immune systems. However, the presence of D-amino acids and their recruitment in early animals is mostly unknown due to limited information about prebilaterian metazoans. Here, we performed the comparative survey of L-/D-aspartate and L-/D-glutamate in representatives of four phyla of early-branching Metazoa: cnidarians (Aglantha); placozoans (Trichoplax), sponges (Sycon) and ctenophores (Pleurobrachia, Mnemiopsis, Bolinopsis, and Beroe), which are descendants of ancestral animal lineages distinct from Bilateria. Specifically, we used high-performance capillary electrophoresis for microchemical assays and quantification of the enantiomers. L-glutamate and L-aspartate were abundant analytes in all species studied. However, we showed that the placozoans, cnidarians, and sponges had high micromolar concentrations of D-aspartate, whereas D-glutamate was not detectable in our assays. In contrast, we found that in ctenophores, D-glutamate was the dominant enantiomer with no or trace amounts of D-aspartate. This situation illuminates prominent lineage-specific diversifications in the recruitment of D-amino acids and suggests distinct signaling functions of these molecules early in the animal evolution. We also hypothesize that a deep ancestry of such recruitment events might provide some constraints underlying the evolution of neural and other signaling systems in Metazoa.


Assuntos
Cnidários/química , Ctenóforos/química , Ácido D-Aspártico/análise , Ácido Glutâmico/análise , Placozoa/química , Poríferos/química , Animais , Eletroforese Capilar , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA