Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(19): 13508-13520, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37132325

RESUMO

SARS-CoV-2 RNA dependent RNA polymerase (RdRp) serves as a highly promising antiviral drug target such as for a Remdesivir nucleotide analogue (RDV-TP or RTP). In this work, we mainly used alchemical all-atom simulations to characterize relative binding free energetics between the nucleotide analogue RTP and natural cognate substrate ATP upon initial binding and pre-catalytic insertion into the active site of SARS-CoV-2 RdRp. Natural non-cognate substrate dATP and mismatched GTP were also examined for computation control. We first identified significant differences in dynamical responses between nucleotide initial binding and subsequent insertion configurations to the open and closed active sites of the RdRp, respectively, though the RdRp protein conformational changes between the active site's open and closed states are subtle. Our alchemical simulations indicated that upon initial binding (active site open), RTP and ATP show similar binding free energies to the active sites while in the insertion state (active site closed), ATP is more stabilized (∼-2.4 kcal mol-1) than RTP in free energetics. Additional analyses show, however, that RTP is more stabilized in binding energetics than ATP, in both the insertion and initial binding states, with RTP more stabilized due to the electrostatic energy in the insertion state and due to vdW energy in the initial binding state. Hence, it appears that natural cognate ATP still excels at association stability with the RdRp active site due to that ATP maintains sufficient flexibilities e.g., in base pairing with the template, which exemplifies an entropic contribution to the cognate substrate stabilization. These findings highlight the importance of substrate flexibilities in addition to energetic stabilization in antiviral nucleotide analogue design.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Domínio Catalítico , RNA Viral , Tratamento Farmacológico da COVID-19 , Monofosfato de Adenosina/química , Antivirais/química , Trifosfato de Adenosina/metabolismo
2.
Comput Struct Biotechnol J ; 19: 3339-3348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104356

RESUMO

Designing antiviral therapeutics is of great concern per current pandemics caused by novel coronavirus or SARS-CoV-2. The core polymerase enzyme in the viral replication/transcription machinery is generally conserved and serves well for drug target. In this work we briefly review structural biology and computational clues on representative single-subunit viral polymerases that are more or less connected with SARS-CoV-2 RNA dependent RNA polymerase (RdRp), in particular, to elucidate how nucleotide substrates and potential drug analogs are selected in the viral genome synthesis. To do that, we first survey two well studied RdRps from Polio virus and hepatitis C virus in regard to structural motifs and key residues that have been identified for the nucleotide selectivity. Then we focus on related structural and biochemical characteristics discovered for the SARS-CoV-2 RdRp. To further compare, we summarize what we have learned computationally from phage T7 RNA polymerase (RNAP) on its stepwise nucleotide selectivity, and extend discussion to a structurally similar human mitochondria RNAP, which deserves special attention as it cannot be adversely affected by antiviral treatments. We also include viral phi29 DNA polymerase for comparison, which has both helicase and proofreading activities on top of nucleotide selectivity for replication fidelity control. The helicase and proofreading functions are achieved by protein components in addition to RdRp in the coronavirus replication-transcription machine, with the proofreading strategy important for the fidelity control in synthesizing a comparatively large viral genome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA