Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 246(20): 2159-2169, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34404252

RESUMO

Age-related macular degeneration (AMD) is a leading cause of severe vision loss. With our aging population, it may affect 288 million people globally by the year 2040. AMD progresses from an early and intermediate dry form to an advanced one, which manifests as choroidal neovascularization and geographic atrophy. Conversion to AMD-related exudation is known as progression to neovascular AMD, and presence of geographic atrophy is known as progression to advanced dry AMD. AMD progression predictions could enable timely monitoring, earlier detection and treatment, improving vision outcomes. Machine learning approaches, a subset of artificial intelligence applications, applied on imaging data are showing promising results in predicting progression. Extracted biomarkers, specifically from optical coherence tomography scans, are informative in predicting progression events. The purpose of this mini review is to provide an overview about current machine learning applications in artificial intelligence for predicting AMD progression, and describe the various methods, data-input types, and imaging modalities used to identify high-risk patients. With advances in computational capabilities, artificial intelligence applications are likely to transform patient care and management in AMD. External validation studies that improve generalizability to populations and devices, as well as evaluating systems in real-world clinical settings are needed to improve the clinical translations of artificial intelligence AMD applications.


Assuntos
Aprendizado Profundo , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/diagnóstico , Tomografia de Coerência Óptica/métodos , Envelhecimento/fisiologia , Algoritmos , Biomarcadores/análise , Biologia Computacional/métodos , Progressão da Doença , Feminino , Humanos , Degeneração Macular/patologia , Prognóstico , Vasos Retinianos/diagnóstico por imagem , Acuidade Visual/fisiologia
2.
Transl Vis Sci Technol ; 10(7): 30, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34185055

RESUMO

Purpose: To probabilistically forecast needed anti-vascular endothelial growth factor (anti-VEGF) treatment frequency using volumetric spectral domain-optical coherence tomography (SD-OCT) biomarkers in neovascular age-related macular degeneration from real-world settings. Methods: SD-OCT volume scans were segmented with a custom deep-learning-based analysis pipeline. Retinal thickness and reflectivity values were extracted for the central and the four inner Early Treatment Diabetic Retinopathy Study (ETDRS) subfields for six retinal layers (inner retina, outer nuclear layer, inner segments [IS], outer segments [OS], retinal pigment epithelium-drusen complex [RPEDC] and the choroid). Machine-learning models were probed to predict the anti-VEGF treatment frequency within the next 12 months. Probabilistic forecasting was performed using natural gradient boosting (NGBoost), which outputs a full probability distribution. The mean absolute error (MAE) between the predicted versus actual anti-VEGF treatment frequency was the primary outcome measure. Results: In a total of 138 visits of 99 eyes with neovascular AMD (96 patients) from two clinical centers, the prediction of future anti-VEGF treatment frequency was observed with an accuracy (MAE [95% confidence interval]) of 2.60 injections/year [2.25-2.96] (R2 = 0.390) using random forest regression and 2.66 injections/year [2.31-3.01] (R2 = 0.094) using NGBoost, respectively. Prediction intervals were well calibrated and reflected the true uncertainty of NGBoost-based predictions. Standard deviation of RPEDC-thickness in the central ETDRS-subfield constituted an important predictor across models. Conclusions: The proposed, fully automated pipeline enables probabilistic forecasting of future anti-VEGF treatment frequency in real-world settings. Translational Relevance: Prediction of a probability distribution allows the physician to inspect the underlying uncertainty. Predictive uncertainty estimates are essential to highlight cases where human-inspection and/or reversion to a fallback alternative is warranted.


Assuntos
Inibidores da Angiogênese , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Degeneração Macular Exsudativa , Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Humanos , Acuidade Visual , Degeneração Macular Exsudativa/tratamento farmacológico
3.
Cont Lens Anterior Eye ; 44(2): 398-430, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33775384

RESUMO

Contact lenses in the future will likely have functions other than correction of refractive error. Lenses designed to control the development of myopia are already commercially available. Contact lenses as drug delivery devices and powered through advancements in nanotechnology will open up further opportunities for unique uses of contact lenses. This review examines the use, or potential use, of contact lenses aside from their role to correct refractive error. Contact lenses can be used to detect systemic and ocular surface diseases, treat and manage various ocular conditions and as devices that can correct presbyopia, control the development of myopia or be used for augmented vision. There is also discussion of new developments in contact lens packaging and storage cases. The use of contact lenses as devices to detect systemic disease has mostly focussed on detecting changes to glucose levels in tears for monitoring diabetic control. Glucose can be detected using changes in colour, fluorescence or generation of electric signals by embedded sensors such as boronic acid, concanavalin A or glucose oxidase. Contact lenses that have gained regulatory approval can measure changes in intraocular pressure to monitor glaucoma by measuring small changes in corneal shape. Challenges include integrating sensors into contact lenses and detecting the signals generated. Various techniques are used to optimise uptake and release of the drugs to the ocular surface to treat diseases such as dry eye, glaucoma, infection and allergy. Contact lenses that either mechanically or electronically change their shape are being investigated for the management of presbyopia. Contact lenses that slow the development of myopia are based upon incorporating concentric rings of plus power, peripheral optical zone(s) with add power or non-monotonic variations in power. Various forms of these lenses have shown a reduction in myopia in clinical trials and are available in various markets.


Assuntos
Lentes de Contato , Miopia , Presbiopia , Erros de Refração , Olho , Humanos , Refração Ocular , Erros de Refração/diagnóstico , Erros de Refração/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA