Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937422

RESUMO

Cyclin-dependent kinase 5 (CDK5) is a protein kinase involved in neuronal homeostasis and development critical for neuronal survival. Besides, its deregulation is linked to neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases. For that reason, we aimed to generate a deficient CDK5 genetic model in neurons derived from human-induced pluripotent stem cells (hiPSCs) using CRISPR/Cas9 technology. We obtained a heterozygous CDK5+/- clone for the FN2.1 hiPSC line that retained hiPSC stemness and pluripotent potential. Then, neural stem cells (NSCs) and further neurons were derived from the CDK5+/- KO FN2.1 hiPSCs, and their phenotype was validated by immunofluorescence staining using antibodies that recognize lineage-specific markers (SOX-1, SOX-2, and NESTIN for NSCs and TUJ-1, MAP-5, and MAP-2 for neurons). We found that the proliferation rate increased in CDK5+/- KO hiPSC-derived neurons concomitantly with a reduction in NEUN and P35 expression levels. However, the morphometric analysis revealed that CDK5 deficiency caused an increase in the length of the main, primary, and secondary neurites and the neuronal soma area. As a whole, we found that a deficit in CDK5 does not impair hiPSC neuronal differentiation but deregulates proliferation and neurite outgrowth, favoring elongation. The misregulated activity of specific kinases leads to abnormalities such as impaired axonal connectivity in neurodegenerative diseases. Thus, therapeutic approaches aimed at normalizing the activity of kinases, such as CDK5, may help prevent the degeneration of vulnerable neurons.

2.
J Cancer Res Clin Oncol ; 150(2): 106, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418798

RESUMO

PURPOSE: De novo synthesis of cholesterol and its rate-limiting enzyme, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMGCR), is deregulated in tumors and critical for tumor cell survival and proliferation. However, the role of HMGCR in the induction and maintenance of stem-like states in tumors remains unclear. METHODS: A compiled public database from breast cancer (BC) patients was analyzed with the web application SurvExpress. Cell Miner was used for the analysis of HMGCR expression and statin sensitivity of the NCI-60 cell lines panel. A CRISPRon system was used to induce HMGCR overexpression in the luminal BC cell line MCF-7 and a lentiviral pLM-OSKM system for the reprogramming of MCF-7 cells. Comparisons were performed by two-tailed unpaired t-test for two groups and one- or two-way ANOVA. RESULTS: Data from BC patients showed that high expression of several members of the cholesterol synthesis pathway were associated with lower recurrence-free survival, particularly in hormone-receptor-positive BC. In silico and in vitro analysis showed that HMGCR is expressed in several BC cancer cell lines, which exhibit a subtype-dependent response to statins in silico and in vitro. A stem-like phenotype was demonstrated upon HMGCR expression in MCF-7 cells, characterized by expression of the pluripotency markers NANOG, SOX2, increased CD44 +/CD24low/ -, CD133 + populations, and increased mammosphere formation ability. Pluripotent and cancer stem cell lines showed high expression of HMGCR, whereas cell reprogramming of MCF-7 cells did not increase HMGCR expression. CONCLUSION: HMGCR induces a stem-like phenotype in BC cells of epithelial nature, thus affecting tumor initiation, progression and statin sensitivity.


Assuntos
Neoplasias da Mama , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Feminino , Neoplasias da Mama/patologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Oxirredutases , Colesterol
3.
Artigo em Inglês | MEDLINE | ID: mdl-37682578

RESUMO

Introduction: Cannabidiol (CBD), the main non-psychoactive cannabinoid of the Cannabis sativa plant, is a powerful antioxidant compound that in recent years has increased interest due to causes effects in a wide range of biological functions. Zika virus (ZIKV) is a virus transmitted mainly by the Aedes aegypti mosquitoes, which causes neurological diseases, such as microcephaly and Guillain-Barre syndrome. Although the frequency of viral outbreaks has increased recently, no vaccinations or particular chemotherapeutic treatments are available for ZIKV infection. Objectives: The major aim of this study was to explore the in vitro antiviral activity of CBD against ZIKV, expanding also to other dissimilar viruses. Materials and Methods: Cell cultures were infected with enveloped and nonenveloped viruses and treated with non-cytotoxic concentrations of CBD and then, viral titers were determined. Additionally, the mechanism of action of the compound during ZIKV in vitro infections was studied. To study the possible immunomodulatory role of CBD, infected and uninfected Huh-7 cells were exposed to 10 µM CBD during 48 h and levels of interleukins 6 and 8 and interferon-beta (IFN-ß) expression levels were measured. On the other hand, the effect of CBD on cellular membranes was studied. For this, an immunofluorescence assay was performed, in which cell membranes were labeled with wheat germ agglutinin. Finally, intracellular cholesterol levels were measured. Results: CBD exhibited a potent antiviral activity against all the tested viruses in different cell lines with half maximal effective concentration values (CE50) ranging from 0.87 to 8.55 µM. Regarding the immunomodulatory effect of CBD during ZIKV in vitro infections, CBD-treated cells exhibited significantly IFN-ß increased levels, meanwhile, interleukins 6 and 8 were not induced. Furthermore, it was determined that CBD affects cellular membranes due to the higher fluorescence intensity that was observed in CBD-treated cells and lowers intracellular cholesterol levels, thus affecting the multiplication of ZIKV and other viruses. Conclusions: It was demonstrated that CBD inhibits structurally dissimilar viruses, suggesting that this phytochemical has broad-spectrum antiviral effect, representing a valuable alternative in emergency situations during viral outbreaks, like the one caused by severe acute respiratory syndrome coronavirus 2 in 2020.

5.
Stem Cell Res ; 69: 103076, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36963214

RESUMO

Human induced pluripotent stem cell (hiPSC) line INEUi001-A was reprogrammed from peripheral blood mononuclear cells (PBMC) using the lentiviral-hSTEMCCA-loxP vector. PBMCs were obtained from a 75- year-old female ALS/FTD disease patient carrying a heterozygous deletion within the C9ORF72 hexanucleotide repeat region resulting in a GGGGCCG sequence (∼1.16 repeats). C9ORF72 genotype was maintained and stemness and pluripotency confirmed in INEUi001-A hiPSC line.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Feminino , Humanos , Idoso , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína C9orf72/genética , Leucócitos Mononucleares/metabolismo , Genótipo
6.
Sci Rep ; 12(1): 18803, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335243

RESUMO

Human embryonic and induced pluripotent stem cells are self-renewing pluripotent stem cells (hPSCs) that can differentiate into a wide range of specialized cells. Although moderate hypoxia (5% O2) improves hPSC self-renewal, pluripotency, and cell survival, the effect of acute severe hypoxia (1% O2) on hPSC viability is still not fully elucidated. In this sense, we explore the consequences of acute hypoxia on hPSC survival by culturing them under acute (maximum of 24 h) physical severe hypoxia (1% O2). After 24 h of hypoxia, we observed HIF-1α stabilization concomitant with a decrease in cell viability. We also observed an increase in the apoptotic rate (western blot analysis revealed activation of CASPASE-9, CASPASE-3, and PARP cleavage after hypoxia induction). Besides, siRNA-mediated downregulation of HIF-1α and P53 did not significantly alter hPSC apoptosis induced by hypoxia. Finally, the analysis of BCL-2 family protein expression levels disclosed a shift in the balance between pro- and anti-apoptotic proteins (evidenced by an increase in BAX/MCL-1 ratio) caused by hypoxia. We demonstrated that acute physical hypoxia reduced hPSC survival and triggered apoptosis by a HIF-1α and P53 independent mechanism.


Assuntos
Células-Tronco Pluripotentes , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Hipóxia Celular , Apoptose , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Pluripotentes/metabolismo
7.
Sci Rep ; 12(1): 17729, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273072

RESUMO

The recurrence of Glioblastoma is partly attributed to the highly resistant subpopulation of glioma stem cells. A novel therapeutic approach focuses on restoring apoptotic programs in these cancer stem cells, as they are often deregulated. BH3-mimetics, targeting anti-apoptotic Bcl-2 family members, are emerging as promising compounds to sensitize cancer cells to antineoplastic treatments. Herein, we determined that the most abundantly expressed anti-apoptotic Bcl-2 family members, Bcl-xL and Mcl-1, are the most relevant in regulating patient-derived glioma stem cell survival. We exposed these cells to routinely used chemotherapeutic drugs and BH3-mimetics (ABT-263, WEHI-539, and S63845). We observed that the combination of BH3-mimetics targeting Bcl-xL with chemotherapeutic agents caused a marked increase in cell death and that this sensitivity to Bcl-xL inhibition correlated with Noxa expression levels. Interestingly, whereas co-targeting Bcl-xL and Mcl-1 led to massive cell death in all tested cell lines, down-regulation of Noxa promoted cell survival only in cell lines expressing higher levels of this BH3-only. Therefore, in glioma stem cells, the efficacy of Bcl-xL inhibition is closely associated with Mcl-1 activity and Noxa expression. Hence, a potentially effective strategy would consist of combining Bcl-xL inhibitors with chemotherapeutic agents capable of inducing Noxa, taking advantage of this pro-apoptotic factor.


Assuntos
Antineoplásicos , Glioma , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral , Proteínas Reguladoras de Apoptose/farmacologia , Antineoplásicos/farmacologia , Apoptose , Glioma/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Proteína bcl-X/metabolismo
8.
STAR Protoc ; 3(3): 101487, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35755127

RESUMO

The analysis of morphological features of neurons derived from human pluripotent stem cells (hPSCs) is important to describe neuronal phenotypes and changes observed throughout development. Using free and easily accessible tools, we describe a protocol for the morphometric quantification of hPSCs-derived neurons in two- and three-dimensions in vitro cultures. We detail the analysis of soma area and main and secondary dendrites lengths of GFP-transfected neurons and the measurement of area and perimeter of immunostained neurospheres.


Assuntos
Células-Tronco Pluripotentes , Dendritos , Humanos , Neurônios
10.
Methods Mol Biol ; 2520: 189-198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34611823

RESUMO

Human embryonic stem cells (hESCs) can differentiate into any cell lineage (pluripotency potential) derived from the three germ layers: ectoderm, mesoderm, and endoderm. Pluripotency is usually demonstrated in vitro by spontaneous differentiation of hESCs grown on a monolayer of feeder-cells using an embryoid bodies (EBs)-based method. However, currently hESCs are grown mostly using fully defined media in the absence of a feeder layer. Here we describe a EBs-based protocol that allows multilineage differentiation of hESCs and human induced pluripotent stem cells (hiPSCs) grown on feeder-free conditions.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Corpos Embrioides , Células Alimentadoras , Humanos
11.
Stem Cell Res ; 53: 102325, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33839546

RESUMO

Human induced pluripotent stem cells (hiPSC) line FLENIi001-A was reprogrammed from dermal fibroblasts using the lentiviral-hSTEMCCA-loxP vector. Fibroblasts were obtained from a skin biopsy of a 72-year-old Caucasian male familial Alzheimer's disease patient carrying the T119I mutation in the PSEN1 gene. PSEN1 genotype was maintained and stemness and pluripotency confirmed in the FLENIi001-A hiPSC line.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Idoso , Doença de Alzheimer/genética , Diferenciação Celular , Fibroblastos , Humanos , Masculino , Presenilina-1/genética
12.
Gene Expr Patterns ; 40: 119168, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33503507

RESUMO

Human pluripotent stem cells (hPSCs), like embryonic (hESCs) and induced pluripotent stem cells (hiPSCs), exhibit an unusual cell cycle structure characterized by a short G1 phase and cells being most of time in S phase. hPSCs are receptive to differentiation cues during their transition through G1 phase when lineage determination is decided. Although several MicroRNAs (miRNAs) have been shown to target transcripts that directly or indirectly coordinate the cell cycle of pluripotent cells, its temporal expression profile along hPSCs cell cycle remains poorly characterized. miR-145 and miR-296 are induced during differentiation and silence the self-renewal and pluripotency program. miR-302 family is essential for hPSCs stemness and its expression decreases during differentiation. We aimed to study how the aforementioned miRNAs are regulated along the cell cycle of hPSCs. We demonstrated by pharmacological synchronization and block and release experiments that miR-145, miR-296 and miR-302 family are periodically expressed in hPSCs. Importantly, miR-302 family expression is induced at G1/S boundary and remained high at S phase, presumably to impede differentiation onset. Besides, we confirmed by a gene ontology analysis that many validated miR-302 family target genes are involved in cell cycle regulation.


Assuntos
Pontos de Checagem do Ciclo Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/genética , Linhagem Celular , Citostáticos/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , MicroRNAs/metabolismo
13.
Sci Rep ; 10(1): 20653, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244167

RESUMO

Human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are self-renewing human pluripotent stem cells (hPSCs) that can differentiate to a wide range of specialized cells. Notably, hPSCs enhance their undifferentiated state and self-renewal properties in hypoxia (5% O2). Although thoroughly analyzed, hypoxia implication in hPSCs death is not fully determined. In order to evaluate the effect of chemically mimicked hypoxia on hPSCs cell survival, we analyzed changes in cell viability and several aspects of apoptosis triggered by CoCl2 and dimethyloxalylglycine (DMOG). Mitochondrial function assays revealed a decrease in cell viability at 24 h post-treatments. Moreover, we detected chromatin condensation, DNA fragmentation and CASPASE-9 and 3 cleavages. In this context, we observed that P53, BNIP-3, and NOXA protein expression levels were significantly up-regulated at different time points upon chemical hypoxia induction. However, only siRNA-mediated downregulation of NOXA but not HIF-1α, HIF-2α, BNIP-3, and P53 did significantly affect the extent of cell death triggered by CoCl2 and DMOG in hPSCs. In conclusion, chemically mimicked hypoxia induces hPSCs cell death by a NOXA-mediated HIF-1α and HIF-2α independent mechanism.


Assuntos
Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Caspase 3/genética , Caspase 9/genética , Morte Celular/genética , Sobrevivência Celular/genética , Fragmentação do DNA , Regulação para Baixo/genética , Humanos , Proteínas de Membrana/genética , Mitocôndrias/genética , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Regulação para Cima/genética
15.
Nat Neurosci ; 23(8): 939-951, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32690969

RESUMO

Zika virus (ZIKV) is a flavivirus linked to multiple birth defects including microcephaly, known as congenital ZIKV syndrome. The identification of host factors involved in ZIKV replication may guide efficacious therapeutic interventions. In genome-wide transcriptional studies, we found that ZIKV infection triggers aryl hydrocarbon receptor (AHR) activation. Specifically, ZIKV infection induces kynurenine (Kyn) production, which activates AHR, limiting the production of type I interferons (IFN-I) involved in antiviral immunity. Moreover, ZIKV-triggered AHR activation suppresses intrinsic immunity driven by the promyelocytic leukemia (PML) protein, which limits ZIKV replication. AHR inhibition suppressed the replication of multiple ZIKV strains in vitro and also suppressed replication of the related flavivirus dengue. Finally, AHR inhibition with a nanoparticle-delivered AHR antagonist or an inhibitor developed for human use limited ZIKV replication and ameliorated newborn microcephaly in a murine model. In summary, we identified AHR as a host factor for ZIKV replication and PML protein as a driver of anti-ZIKV intrinsic immunity.


Assuntos
Receptores de Hidrocarboneto Arílico/metabolismo , Replicação Viral , Zika virus/metabolismo , Animais , Chlorocebus aethiops , Células Hep G2 , Humanos , Células Vero , Infecção por Zika virus/metabolismo
16.
BMC Mol Cell Biol ; 20(1): 40, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462218

RESUMO

BACKGROUND: The essentially unlimited expansion potential and the pluripotency of human embryonic stem cells (hESCs) make them attractive for cell-based therapeutic purposes. Although hESCs can indefinitely proliferate in culture, unlike transformed cancer cells, they are endowed with a cell-intrinsic property termed mitochondrial priming that renders them highly sensitive to apoptotic stimuli. Thus, all attempts to broaden the insights into hESCs apoptosis may be helpful for establishing pro-survival strategies valuable for its in vitro culture and further use in clinical applications. Cyclin-dependent kinases (CDKs), a family of serine/threonine protein kinases originally identified as regulators of the eukaryotic cell cycle, can also regulate transcription and differentiation. Moreover, there are compelling data suggesting that its activities are involved in certain apoptotic programs in different cell types. Currently, it is not completely determined whether CDKs regulate apoptotic processes in rapidly proliferating and apoptosis-prone hESCs. In this study, to elucidate the effect of CDKs inhibition in hESCs we used Roscovitine (ROSC), a purine analogue that selectively inhibits the activities of these kinases. RESULTS: Inhibition of CDKs by ROSC triggers programmed cell death in hESCs but not in proliferating somatic cells (human fibroblasts). The apoptotic process encompasses caspase-9 and -3 activation followed by PARP cleavage. ROSC treatment also leads to p53 stabilization, which coincides with site-specific phosphorylation at serine 46 and decreased levels of Mdm2. Additionally, we observed a transcriptional induction of p53AIP1, a repression of pro-survival factor Mcl-1 and an up-regulation of pro-apoptotic BH3-only proteins NOXA and PUMA. Importantly, we found that the role of CDK2 inhibition appears to be at best accessory as an active CDK2 is not required to ensure hESCs survival. CONCLUSION: Our experimental data reveal that hESCs, contrary to fibroblasts, exhibit a pronounced sensitivity to ROSC.


Assuntos
Quinases Ciclina-Dependentes/farmacologia , Células-Tronco Embrionárias Humanas/citologia , Inibidores de Proteínas Quinases/farmacologia , Roscovitina/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fosforilação/efeitos dos fármacos , Domínios Proteicos , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/metabolismo
17.
Mol Neurobiol ; 56(11): 7810-7821, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31124078

RESUMO

Glioblastoma multiforme is the most aggressive primary brain tumor. Current knowledge suggests that the growth and recurrence of these tumors are due in part to the therapy-resistant glioma stem cell subpopulation, which possesses the ability for self-renewal and proliferation, driving tumor progression. In many cancers, the p16INK4a-CDK4/6-pRb pathway is disrupted in favor of cell cycle progression. In particular, the frequent deregulation of CDK4/6 in cancer positions these kinases as promising targets. Palbociclib, a potent and selective CDK4/6 inhibitor, has been approved by the FDA as a first-line treatment of advanced breast cancer and there is currently interest in evaluating its effect on other cancer types. Palbociclib has been reported to be efficient, not only at halting proliferation, but also at inducing senescence in different tumor types. In this study, we evaluated the effect of this inhibitor on four patient-derived glioma stem cell-enriched cell lines. We found that Palbociclib rapidly and effectively inhibits proliferation without affecting cell viability. We also established that in these cell lines CDK6 is the key interphase CDK for controlling cell cycle progression. Prolonged exposure to Palbociclib induced a senescent-like phenotype characterized by flattened morphology, cell cycle arrest, increased ß-galactosidase activity and induction of other senescent-associated markers. However, we found that after Palbociclib removal cell lines resumed normal proliferation, which implies they conserved their replicative potential. As a whole, our results indicate that in patient-derived glioma stem cell-enriched cell lines, Palbociclib induces a senescent-like quiescence rather than true senescence.


Assuntos
Neoplasias Encefálicas/patologia , Senescência Celular/efeitos dos fármacos , Glioma/patologia , Células-Tronco Neoplásicas/patologia , Piperazinas/farmacologia , Piridinas/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glioma/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Roscovitina/farmacologia
18.
Cell Cycle ; 17(14): 1721-1744, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29995582

RESUMO

Human pluripotent stem cells (hPSCs), including embryonic and induced pluripotent stem cells (hESCs and hiPSCs) show unique cell cycle characteristics, such as a short doubling time due to an abbreviated G1 phase. Whether or not the core cell cycle machinery directly regulates the stemness and/or the differentiation potential of hPSCs remains to be determined. To date, several scenarios describing the atypical cell cycle of hPSCs have been suggested, and therefore there is still controversy over how cyclins, master regulators of the cell cycle, are expressed and regulated. Furthermore, the cell cycle profile and the expression pattern of major cyclins in hESCs-derived neuroprogenitors (NP) have not been studied yet. Therefore, herein we characterized the expression pattern of major cyclins in hPSCs and NP. We determined that all studied cyclins mRNA expression levels fluctuate along cell cycle. Particularly, after a thorough analysis of synchronized cell populations, we observed that cyclin E1 mRNA levels increased sharply in G1/S concomitantly with cyclin E1 protein accumulation in hPSCs and NP. Additionally, we demonstrated that cyclin E1 mRNA expression levels involves the activation of MEK/ERK pathway and the transcription factors c-Myc and E2Fs in hPSCs. Lastly, our results reveal that proteasome mediates the marked down-regulation (degradation) of cyclin E1 protein observed in G2/M by a mechanism that requires a functional CDK2 but not GSK3ß activity. ABBREVIATIONS: hPSCs: human pluripotent stem cells; hESCs: human embryonic stem cells; hiPSCs: human induced pluripotent stem cells; NP: neuroprogenitors; HF: human foreskin fibroblasts; MEFs: mouse embryonic fibroblasts; iMEFs: irradiated mouse embryonic fibroblasts; CDKs: cyclindependent kinases; CKIs: CDK inhibitors; CNS: central nervous system; Oct-4: Octamer-4; EB: embryoid body; AFP: Alpha-fetoprotein; cTnT: Cardiac Troponin T; MAP-2: microtubule-associated protein; TUJ-1: neuron-specific class III ß-tubulin; bFGF: basic fibroblastic growth factor; PI3K: Phosphoinositide 3-kinase; KSR: knock out serum replacement; CM: iMEF conditioned medium; E8: Essential E8 medium.


Assuntos
Ciclina E/genética , Regulação da Expressão Gênica , Neurônios/citologia , Neurônios/metabolismo , Proteínas Oncogênicas/genética , Células-Tronco Pluripotentes/citologia , Proliferação de Células , Células Cultivadas , Ciclina E/metabolismo , Fatores de Transcrição E2F/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Fase G2 , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mitose , Células-Tronco Neurais/metabolismo , Proteínas Oncogênicas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Sci Rep ; 8(1): 8072, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795287

RESUMO

MicroRNAs are small non-coding RNAs involved in post-transcriptional regulation of gene expression related to many cellular functions. We performed a small-RNAseq analysis of cardiac differentiation from pluripotent stem cells. Our analyses identified some new aspects about microRNA expression in this differentiation process. First, we described a dynamic expression profile of microRNAs where some of them are clustered according to their expression level. Second, we described the extensive network of isomiRs and ADAR modifications. Third, we identified the microRNAs families and clusters involved in the establishment of cardiac lineage and define the mirRNAome based on these groups. Finally, we were able to determine a more accurate miRNAome associated with cardiomyocytes by comparing the expressed microRNAs with other mature cells. MicroRNAs exert their effect in a complex and interconnected way, making necessary a global analysis to better understand their role. Our data expands the knowledge of microRNAs and their implications in cardiomyogenesis.


Assuntos
Biomarcadores/metabolismo , Linhagem da Célula/genética , Regulação da Expressão Gênica , Mesoderma/metabolismo , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Células Cultivadas , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mesoderma/citologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia
20.
J Cardiovasc Transl Res ; 11(1): 1-13, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29019149

RESUMO

Leukemia inhibitory factor (LIF) is a growth factor with pleiotropic biological functions. It has been reported that LIF acts at different stages during mesoderm development. Also, it has been shown that LIF has a cytoprotective effect on neonatal murine cardiomyocytes (CMs) in culture, but little is known about the role of LIF during human cardiogenesis. Thus, we analyzed the effects of LIF on human pluripotent stem cells (PSC) undergoing cardiac differentiation. We first showed that LIF is expressed in the human heart during early development. We found that the addition of LIF within a precise time window during the in vitro differentiation process significantly increased CMs viability. This finding was associated to a decrease in the expression of pro-apoptotic protein Bax, which coincides with a reduction of the apoptotic rate. Therefore, the addition of LIF may represent a promising strategy for increasing CMs survival derived from PSCs.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Fator Inibidor de Leucemia/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Fator Inibidor de Leucemia/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fenótipo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Fatores de Tempo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA