Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Neurosci ; 44(29)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886056

RESUMO

The small G-protein Ras-related C3 botulinum toxin substrate 1 (Rac1) promotes the formation of filamentous actin (F-actin). Actin is a major component of dendritic spines, and we previously found that alcohol alters actin composition and dendritic spine structure in the nucleus accumbens (NAc) and the dorsomedial striatum (DMS). To examine if Rac1 contributes to these alcohol-mediated adaptations, we measured the level of GTP-bound active Rac1 in the striatum of mice following 7 weeks of intermittent access to 20% alcohol. We found that chronic alcohol intake activates Rac1 in the DMS of male mice. In contrast, Rac1 is not activated by alcohol in the NAc and DLS of male mice or in the DMS of female mice. Similarly, closely related small G-proteins are not activated by alcohol in the DMS, and Rac1 activity is not increased in the DMS by moderate alcohol or natural reward. To determine the consequences of alcohol-dependent Rac1 activation in the DMS of male mice, we inhibited endogenous Rac1 by infecting the DMS of mice with an adeno-associated virus (AAV) expressing a dominant negative form of the small G-protein (Rac1-DN). We found that overexpression of AAV-Rac1-DN in the DMS inhibits alcohol-mediated Rac1 signaling and attenuates alcohol-mediated F-actin polymerization, which corresponded with a decrease in dendritic arborization and spine maturation. Finally, we provide evidence to suggest that Rac1 in the DMS plays a role in alcohol-associated goal-directed learning. Together, our data suggest that Rac1 in the DMS plays an important role in alcohol-dependent structural plasticity and aberrant learning.


Assuntos
Corpo Estriado , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Proteínas rac1 de Ligação ao GTP , Animais , Masculino , Camundongos , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Feminino , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Etanol/farmacologia , Aprendizagem/fisiologia , Aprendizagem/efeitos dos fármacos , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/efeitos dos fármacos
2.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915579

RESUMO

Prosapip1 is a brain-specific protein localized to the postsynaptic density, where it promotes dendritic spine maturation in primary hippocampal neurons. However, nothing is known about the role of Prosapip1 in vivo . To examine this, we utilized the Cre-loxP system to develop a Prosapip1 neuronal knockout mouse. We found that Prosapip1 controls the synaptic localization of its binding partner SPAR, along with PSD-95 and the GluN2B subunit of the NMDA receptor (NMDAR) in the dorsal hippocampus (dHP). We next sought to identify the potential contribution of Prosapip1 to the activity and function of the NMDAR and found that Prosapip1 plays an important role in NMDAR-mediated transmission and long-term potentiation (LTP) in the CA1 region of the dHP. As LTP is the cellular hallmark of learning and memory, we examined the consequences of neuronal knockout of Prosapip1 on dHP-dependent memory. We found that global or dHP-specific neuronal knockout of Prosapip1 caused a deficit in learning and memory whereas developmental, locomotor, and anxiety phenotypes were normal. Taken together, Prosapip1 in the dHP promotes the proper localization of synaptic proteins which, in turn, facilitates LTP driving recognition, social, and spatial learning and memory.

3.
bioRxiv ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38712221

RESUMO

The kinase mechanistic target of rapamycin complex 1 (mTORC1) plays an essential role in learning and memory by promoting mRNA to protein translation of a subset of synaptic proteins at dendrites. We generated a large body of data in male rodents indicating that mTORC1 is critically involved in mechanisms that promote numerous adverse behaviors associated with alcohol use disorder (AUD) including heavy alcohol use. For example, we found that mTORC1 is activated in the nucleus accumbens (NAc) and orbitofrontal cortex (OFC) of male mice and rats that were subjected to 7 weeks of intermittent access to 20% alcohol two-bottle choice (IA20%2BC). We further showed that systemic or intra-NAc administration of the selective mTORC1 inhibitor, rapamycin, decreases alcohol seeking and drinking, whereas intra-OFC administration of rapamycin reduces alcohol seeking and habit in male rats. This study aimed to assess mTORC1 activation in these corticostriatal regions of female mice and to determine whether the selective mTORC1 inhibitor, rapamycin, can be used to reduce heavy alcohol use in female mice. We found that mTORC1 is not activated by 7 weeks of intermittent 20% alcohol binge drinking and withdrawal in the NAc and OFC. Like in males, mTORC1 signaling was not activated by chronic alcohol intake and withdrawal in the medial prefrontal cortex (mPFC) of female mice. Interestingly, Pearson correlation comparisons revealed that the basal level of mTORC1 activation between the two prefrontal regions, OFC and mPFC were correlated and that the drinking profile predicts the level of mTORC1 activation in the mPFC after 4-hour binge drinking. Finally, we report that administration of rapamycin does not attenuate heavy alcohol drinking in female animals. Together, our results suggest a sex-dependent contribution of mTORC1 to the neuroadaptation that drives alcohol use and abuse.

4.
Neuropsychopharmacology ; 49(5): 824-836, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37684522

RESUMO

The transition from hedonic alcohol drinking to problematic drinking is a hallmark of alcohol use disorder that occurs only in a subset of drinkers. This transition requires long-lasting changes in the synaptic drive and the activity of striatal neurons expressing dopamine D1 receptor (D1R). The molecular mechanisms that generate vulnerability in some individuals to undergo the transition are less understood. Here, we report that the Parkinson's-related protein leucine-rich repeat kinase 2 (LRRK2) modulates striatal D1R function to affect the behavioral response to alcohol and the likelihood that mice transition to heavy, persistent alcohol drinking. Constitutive deletion of the Lrrk2 gene specifically from D1R-expressing neurons potentiated D1R signaling at the cellular and synaptic level and enhanced alcohol-related behaviors and drinking. Mice with cell-specific deletion of Lrrk2 were more prone to heavy alcohol drinking, and consumption was insensitive to punishment. These findings identify a potential novel role for LRRK2 function in the striatum in promoting resilience against heavy and persistent alcohol drinking.


Assuntos
Corpo Estriado , Neostriado , Camundongos , Animais , Leucina/metabolismo , Neostriado/metabolismo , Corpo Estriado/metabolismo , Consumo de Bebidas Alcoólicas , Etanol/farmacologia , Receptores de Dopamina D1/metabolismo , Viés
5.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076984

RESUMO

mTORC1 promotes protein translation, learning and memory, and neuroadaptations that underlie alcohol use and abuse. We report that activation of mTORC1 in the nucleus accumbens (NAc) of mice consuming alcohol promotes the translation of microRNA (miR) machinery components and the upregulation of microRNAs (miRs) expression including miR34a-5p. In parallel, we detected a paradoxical mTORC1-dependent repression of translation of transcripts including Aldolase A, an essential glycolytic enzyme. We found that miR34a-5p in the NAc targets Aldolase A for translation repression and promotes alcohol intake. Our data further suggest that glycolysis is inhibited in the NAc manifesting in an mTORC1-dependent attenuation of L-lactate, the end product of glycolysis. Finally, we show that systemic administration of L-lactate attenuates mouse excessive alcohol intake. Our data suggest that alcohol promotes paradoxical actions of mTORC1 on translation and glycolysis which in turn drive excessive alcohol use.

6.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693512

RESUMO

The small G-protein Rac1 promotes the formation of filamentous actin (F-Actin). Actin is a major component of dendritic spines, and we previously found that alcohol alters actin composition and dendritic spine structure in the nucleus accumbens (NAc) and the dorsomedial striatum (DMS). To examine if Rac1 contributes to these alcohol-mediated adaptations, we measured the level of GTP-bound active Rac1 in the striatum of male and female mice following 7 weeks of intermittent access to 20% alcohol. We found that chronic alcohol intake activates Rac1 in the DMS, but not in the NAc and DLS of male mice. Chronic excessive alcohol intake does not activate Rac1 in the DMS of female mice. Similarly, closely related small G-proteins are not activated by alcohol in the DMS, and Rac1 activity is not increased in the DMS by moderate alcohol or natural reward. To determine the consequences of alcohol-dependent Rac1 activation in the DMS of male mice, we inhibited endogenous Rac1. We infected the DMS of mice with an AAV expressing a dominant negative form of the small G-protein (Rac1-DN). We found that overexpression of AAV-Rac1-DN in the DMS inhibits alcohol-mediated Rac1 signaling and attenuates alcohol-mediated F-Actin polymerization, which corresponded with a decrease in dendritic arborization and spine maturation. Finally, we provide evidence to suggest that Rac1 in the DMS plays a role in alcohol-associated goal-directed learning. Together, our data suggest that Rac1 in the DMS plays an important role in alcohol-dependent structural plasticity and aberrant learning. Significance Statement: Addiction, including alcohol use disorder, is characterized by molecular and cellular adaptations that promote maladaptive behaviors. We found that Rac1 was activated by alcohol in the dorsomedial striatum (DMS) of male mice. We show that alcohol-mediated Rac1 signaling is responsible for alterations in actin dynamics and neuronal morphology. We also present data to suggest that Rac1 is important for alcohol-associated learning process. These results suggest that Rac1 in the DMS is an important contributor to adaptations that promote alcohol use disorder.

7.
eNeuro ; 10(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37156610

RESUMO

Brain-derived neurotrophic factor (BDNF) is released from axon terminals originating in the cerebral cortex onto striatal neurons. Here, we characterized BDNF neurons in the corticostriatal circuitry. First, we used BDNF-Cre and Ribotag transgenic mouse lines to label BDNF-positive neurons in the cortex and detected BDNF expression in all the subregions of the prefrontal cortex (PFC). Next, we used a retrograde viral tracing strategy, in combination with BDNF-Cre knock-in mice, to map the cortical outputs of BDNF neurons in the dorsomedial and dorsolateral striatum (DMS and DLS, respectively). We found that BDNF-expressing neurons located in the medial prefrontal cortex (mPFC) project mainly to the DMS, and those located in the primary and secondary motor cortices (M1 and M2, respectively) and agranular insular cortex (AI) project mainly to the DLS. In contrast, BDNF-expressing orbitofrontal cortical (OFC) neurons differentially target the dorsal striatum (DS) depending on their mediolateral and rostrocaudal location. Specifically, the DMS is mainly innervated by the medial and ventral part of the orbitofrontal cortex (MO and VO, respectively), whereas the DLS receives projections specifically from the lateral part of the OFC (LO). Together, our study uncovers previously unknown BDNF corticostriatal circuitries. These findings could have important implications for the role of BDNF signaling in corticostriatal pathways.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Córtex Cerebral , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/fisiologia , Córtex Pré-Frontal/metabolismo , Corpo Estriado/metabolismo , Neurônios/metabolismo , Vias Neurais/fisiologia
8.
Psychopharmacology (Berl) ; 240(2): 303-317, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36622381

RESUMO

BACKGROUND: The brain-derived neurotrophic factor (BDNF) Valine 66 to Methionine human polymorphism results in impaired activity-dependent BDNF release and has been linked to psychiatric disorders including depression and anxiety. We previously showed that male knock-in mice carrying the mouse Methionine homolog (Met68BDNF) exhibit excessive and compulsive alcohol drinking behaviors as compared to the wild-type Val68BDNF mice. OBJECTIVE: Here, we set out to determine the potential mechanism for the heightened and compulsive alcohol drinking phenotypes detected in Met68BDNF mice. RESULTS: We found that male, but not female Met68BDNF mice exhibit social anxiety-like behaviors. We further show that male Met68BDNF mice exhibit a preference for alcohol over social interaction. In contrast, alcohol place preference without an alternative social reward, is similar in male Met68BDNF and Val68BDNF mice. Since the Met68BDNF mice show social anxiety phenotypes, we tested whether alcohol reliefs anxiety similarly in Met68BDNF and Val68BDNF mice and found that male, but not female Met68BDNF mice are insensitive to the acute anxiolytic action of alcohol. Finally, we show that this acute tolerance to alcohol-dependent anxiolysis can be restored by overexpressing wild-type Val68BDNF in the ventral hippocampus (vHC) of Met68BDNF mice. CONCLUSIONS: Together, our results suggest that excessive alcohol drinking in the Met68BDNF may be attributed, in part, to heighted social anxiety and a lack of alcohol-dependent anxiolysis, a phenotype that is associated with malfunction of BDNF signaling in the vHC of male Met68BDNF mice.


Assuntos
Alcoolismo , Ansiolíticos , Humanos , Feminino , Camundongos , Masculino , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Alcoolismo/genética , Polimorfismo de Nucleotídeo Único , Interação Social , Etanol , Hipocampo/metabolismo , Metionina , Fenótipo
10.
Trends Neurosci ; 44(12): 1004-1015, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34702580

RESUMO

Alcohol use produces wide-ranging and diverse effects on the central nervous system. It influences intracellular signaling mechanisms, leading to changes in gene expression, chromatin remodeling, and translation. As a result of these molecular alterations, alcohol affects the activity of neuronal circuits. Together, these mechanisms produce long-lasting cellular adaptations in the brain that in turn can drive the development and maintenance of alcohol use disorder (AUD). We provide an update on alcohol research, focusing on multiple levels of alcohol-induced adaptations, from intracellular changes to changes in neural circuits. A better understanding of how alcohol affects these diverse and interlinked mechanisms may lead to the identification of novel therapeutic targets and to the development of much-needed novel and efficacious treatment options.


Assuntos
Alcoolismo , Etanol , Alcoolismo/tratamento farmacológico , Alcoolismo/genética , Alcoolismo/metabolismo , Encéfalo/metabolismo , Montagem e Desmontagem da Cromatina , Etanol/metabolismo , Etanol/farmacologia , Etanol/uso terapêutico , Humanos , Neurônios/metabolismo
11.
Phys Rev E ; 104(2-2): 025311, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525628

RESUMO

We present a simple approach to high-accuracy calculations of critical properties for the three-dimensional Ising model, without prior knowledge of the critical temperature. The iterative method uses a modified block-spin transformation with a tunable parameter to improve convergence in the Monte Carlo renormalization group trajectory. We found experimentally that the iterative method enables the calculation of the critical temperature simultaneously with a critical exponent.

12.
Nat Commun ; 12(1): 4407, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315870

RESUMO

Alcohol Use Disorder (AUD) affects a large portion of the population. Unfortunately, efficacious medications to treat the disease are limited. Studies in rodents suggest that mTORC1 plays a crucial role in mechanisms underlying phenotypes such as heavy alcohol intake, habit, and relapse. Thus, mTORC1 inhibitors, which are used in the clinic, are promising therapeutic agents to treat AUD. However, chronic inhibition of mTORC1 in the periphery produces undesirable side effects, which limit their potential use for the treatment of AUD. To overcome these limitations, we designed a binary drug strategy in which male mice were treated with the mTORC1 inhibitor RapaLink-1 together with a small molecule (RapaBlock) to protect mTORC1 activity in the periphery. We show that whereas RapaLink-1 administration blocked mTORC1 activation in the liver, RapaBlock abolished the inhibitory action of Rapalink-1. RapaBlock also prevented the adverse side effects produced by chronic inhibition of mTORC1. Importantly, co-administration of RapaLink-1 and RapaBlock inhibited alcohol-dependent mTORC1 activation in the nucleus accumbens and attenuated alcohol seeking and drinking.


Assuntos
Consumo de Bebidas Alcoólicas/patologia , Encéfalo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Animais , Intolerância à Glucose/complicações , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Especificidade de Órgãos , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Redução de Peso/efeitos dos fármacos
14.
Neuropsychopharmacology ; 46(2): 334-342, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417851

RESUMO

Fyn kinase in the dorsomedial striatum (DMS) of rodents plays a central role in mechanisms underlying excessive alcohol intake. The DMS is comprised of medium spiny neurons (MSNs) that project directly (dMSNs) or indirectly (iMSNs) to the substantia nigra. Here, we examined the cell-type specificity of Fyn's actions in alcohol use. First, we knocked down Fyn selectively in DMS dMSNs or iMSNs of mice and measured the level of alcohol consumption. We found that downregulation of Fyn in dMSNs, but not in iMSNs, reduces excessive alcohol but not saccharin intake. D1Rs are coupled to Gαs/olf, which activate cAMP signaling. To examine whether Fyn's actions are mediated through cAMP signaling, DMS dMSNs were infected with GαsDREADD, and the activation of Fyn signaling was measured following CNO treatment. We found that remote stimulation of cAMP signaling in DMS dMSNs activates Fyn and promotes the phosphorylation of the Fyn substrate, GluN2B. In contract, remote activation of GαsDREADD in DLS dMSNs did not alter Fyn signaling. We then tested whether activation of GαsDREADD in DMS dMSNs or iMSNs alters alcohol intake and observed that CNO-dependent activation of GαsDREADD in DMS dMSNs but not iMSNs increases alcohol but not saccharin intake. Finally, we examined the contribution of Fyn to GαsDREADD-dependent increase in alcohol intake, and found that systemic administration of the Fyn inhibitor, AZD0503 blocks GαsDREADD-dependent increase in alcohol consumption. Our results suggest that the cAMP-Fyn axis in the DMS dMSNs is a molecular transducer of mechanisms underlying the development of excessive alcohol consumption.


Assuntos
Corpo Estriado , Neostriado , Consumo de Bebidas Alcoólicas , Animais , Etanol , Camundongos , Transdução de Sinais
15.
Addict Biol ; 26(2): e12890, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32135570

RESUMO

Heavy alcohol use reduces the levels of the brain-derived neurotrophic factor (BDNF) in the prefrontal cortex of rodents through the upregulation of microRNAs (miRs) targeting BDNF mRNA. In humans, an inverse correlation exists between circulating blood levels of BDNF and the severity of psychiatric disorders including alcohol abuse. Here, we set out to determine whether a history of heavy alcohol use produces comparable alterations in the blood of rats. We used an intermittent access to 20% alcohol using the two-bottle choice paradigm (IA20%2BC) and measured circulating levels of BDNF protein and miRs targeting BDNF in the serum of Long-Evans rats before and after 8 weeks of excessive alcohol intake. We observed that the drinking profile of heavy alcohol users is not unified, whereas 70% of the rats gradually escalate their alcohol intake (late onset), and 30% of alcohol users exhibit a very rapid onset of drinking (rapid onset). We found that serum BDNF levels are negatively correlated with alcohol intake in both rapid onset and late onset rats. In contrast, increased expression of the miRs targeting BDNF, miR30a-5p, miR-195-5p, miR191-5p and miR206-3p, was detected only in the rapid onset rats. Finally, we report that the alcohol-dependent molecular changes are not due to alterations in platelet number. Together, these data suggest that rats exhibit both late and rapid onset of alcohol intake. We further show that heavy alcohol use produces comparable changes in BDNF protein levels in both groups. However, circulating microRNAs are responsive to alcohol only in the rapid onset rats.


Assuntos
Alcoolismo/patologia , Fator Neurotrófico Derivado do Encéfalo/biossíntese , MicroRNAs/biossíntese , Córtex Pré-Frontal/patologia , Animais , Masculino , Gravidade do Paciente , Ratos , Ratos Long-Evans
16.
Nature ; 589(7842): 474-479, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299186

RESUMO

The psychedelic alkaloid ibogaine has anti-addictive properties in both humans and animals1. Unlike most medications for the treatment of substance use disorders, anecdotal reports suggest that ibogaine has the potential to treat addiction to various substances, including opiates, alcohol and psychostimulants. The effects of ibogaine-like those of other psychedelic compounds-are long-lasting2, which has been attributed to its ability to modify addiction-related neural circuitry through the activation of neurotrophic factor signalling3,4. However, several safety concerns have hindered the clinical development of ibogaine, including its toxicity, hallucinogenic potential and tendency to induce cardiac arrhythmias. Here we apply the principles of function-oriented synthesis to identify the key structural elements of the potential therapeutic pharmacophore of ibogaine, and we use this information to engineer tabernanthalog-a water-soluble, non-hallucinogenic, non-toxic analogue of ibogaine that can be prepared in a single step. In rodents, tabernanthalog was found to promote structural neural plasticity, reduce alcohol- and heroin-seeking behaviour, and produce antidepressant-like effects. This work demonstrates that, through careful chemical design, it is possible to modify a psychedelic compound to produce a safer, non-hallucinogenic variant that has therapeutic potential.


Assuntos
Comportamento Aditivo/tratamento farmacológico , Desenho de Fármacos , Ibogaína/análogos & derivados , Ibogaína/efeitos adversos , Alcoolismo/tratamento farmacológico , Animais , Antidepressivos/farmacologia , Arritmias Cardíacas/induzido quimicamente , Técnicas de Química Sintética , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Alucinógenos/efeitos adversos , Dependência de Heroína/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Segurança do Paciente , Receptor 5-HT2A de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Natação , Tabernaemontana/química
17.
Alcohol ; 89: 75-83, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32798692

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a role in different neurophysiological processes, including those involved in alcohol- and anxiety-related behaviors. Preclinical and clinical studies indicate that chronic excessive alcohol use leads to a downregulation of BDNF production in the periphery and in the brain. In addition, a decrease in BDNF concentrations in the blood has been reported to be associated with increased anxiety levels. Non-treatment-seeking alcohol-dependent individuals with high trait anxiety were studied to assess whether serum BDNF concentrations may be linked to self-reported levels of alcohol drinking, anxiety, and other behavioral measures. Participants had a current diagnosis of alcohol dependence, high trait anxiety score, and were not seeking treatment for alcohol dependence or anxiety. A fasting blood sample was collected from each participant and serum BDNF was measured using an enzyme-linked immunosorbent assay (ELISA). Behavioral data were collected on the same day, including measures of alcohol drinking, craving, dependence severity, and anxiety. Bivariate correlations were run between BDNF levels and behavioral measures. Serum BDNF concentrations were negatively correlated with average drinks per drinking days (r = -0.41, p = 0.02) and positively correlated with obsessive-compulsive drinking scale (r = 0.48, p = 0.007) and state-trait anxiety inventory (r = 0.52, p = 0.003) scores. These findings shed light on the possible role of the BDNF system in the neurobiology of alcohol- and anxiety-related behaviors.


Assuntos
Alcoolismo , Ansiedade , Fator Neurotrófico Derivado do Encéfalo , Adulto , Fator Neurotrófico Derivado do Encéfalo/sangue , Etanol , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Artigo em Inglês | MEDLINE | ID: mdl-31964648

RESUMO

Neurotrophic growth factors were originally characterized for their support in neuronal differentiation, outgrowth, and survival during development. However, it has been acknowledged that they also play a vital role in the adult brain. Abnormalities in growth factors have been implicated in a variety of neurological and psychiatric disorders, including alcohol use disorder (AUD). This work focuses on the interaction between alcohol and growth factors. We review literature suggesting that several growth factors play a unique role in the regulation of alcohol consumption, and that breakdown in these growth factor systems is linked to the development of AUD. Specifically, we focus on the brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), and insulin growth factor 1 (IGF-1). We also review the literature on the potential role of midkine (MDK) and pleiotrophin (PTN) and their receptor, anaplastic lymphoma kinase (ALK), in AUD. We show that alcohol alters the expression of these growth factors or their receptors in brain regions previously implicated in addiction, and that manipulations on these growth factors and their downstream signaling can affect alcohol-drinking behaviors in animal models. We conclude that there is a need for translational and clinical research to assess the therapeutic potential of new pharmacotherapies targeting these systems.


Assuntos
Alcoolismo/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
19.
Neuroscientist ; 26(1): 21-42, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31271100

RESUMO

Although historically research has focused on transcription as the central governor of protein expression, protein translation is now increasingly being recognized as a major factor for determining protein levels within cells. The central nervous system relies on efficient updating of the protein landscape. Thus, coordinated regulation of mRNA localization, initiation, or termination of translation is essential for proper brain function. In particular, dendritic protein synthesis plays a key role in synaptic plasticity underlying learning and memory as well as cognitive processes. Increasing evidence suggests that impaired mRNA translation is a common feature found in numerous psychiatric disorders. In this review, we describe how malfunction of translation contributes to development of psychiatric diseases, including schizophrenia, major depression, bipolar disorder, and addiction.


Assuntos
Transtorno Bipolar/metabolismo , Plasticidade Neuronal/fisiologia , Biossíntese de Proteínas/fisiologia , Esquizofrenia/metabolismo , Animais , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Humanos , Memória/fisiologia , Esquizofrenia/genética
20.
Elife ; 82019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31820733

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in dendritic translation and in learning and memory. We previously showed that heavy alcohol use activates mTORC1 in the orbitofrontal cortex (OFC) of rodents (Laguesse et al., 2017a). Here, we set out to determine the consequences of alcohol-dependent mTORC1 activation in the OFC. We found that inhibition of mTORC1 activity in the OFC attenuates alcohol seeking and restores sensitivity to outcome devaluation in rats that habitually seek alcohol. In contrast, habitual responding for sucrose was unaltered by mTORC1 inhibition, suggesting that mTORC1's role in habitual behavior is specific to alcohol. We further show that inhibition of GluN2B in the OFC attenuates alcohol-dependent mTORC1 activation, alcohol seeking and habitual responding for alcohol. Together, these data suggest that the GluN2B/mTORC1 axis in the OFC drives alcohol seeking and habit.


Assuntos
Alcoolismo/fisiopatologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Córtex Pré-Frontal/enzimologia , Córtex Pré-Frontal/fisiologia , Animais , Comportamento Animal , Condicionamento Operante , Etanol/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA